Manitowoc 18000

Service/Maintenance Manual

SERVICE/MAINTENANCE MANUAL

This manual has been prepared for and is considered part of -

18000

Crane Model Number

18001Ref

Crane Serial Number

This manual is divided into the following sections:

SECTION 1 INTRODUCTION **SECTION 2** HYDRAULIC SYSTEM **SECTION 3 ELECTRIC SYSTEM SECTION 4 BOOM SECTION 5 HOISTS SECTION 6 SWING SECTION 7 POWER TRAIN SECTION 8** UNDER CARRIAGE **SECTION 9** LUBRICATION **SECTION 10 TROUBLESHOOTING**

NOTICE

The serial number of the crane and applicable attachments (i.e. luffing jib, MAX-ER®) is the only method your Manitowoc dealer or the Manitowoc Crane Care Lattice Team has of providing you with correct parts and service information.

The serial number is located on a crane identification plate attached to the operator's cab and each attachment. Refer to the Nameplate and Decal Assembly Drawing in Section 2 of this manual for the exact location of the crane identification plate.

Always furnish serial number of crane and its attachments when ordering parts or discussing service problems with your Manitowoc dealer or the Manitowoc Crane Care Lattice Team.

WARNING

To prevent death or serious injury:

- Avoid unsafe operation and maintenance.
 - Crane and attachments must be operated and maintained by trained and experienced personnel. Manitowoc is not responsible for qualifying these personnel.
 - Do not operate or work on crane or attachments without first reading and understanding instructions contained in Operator Information Manual and Service Manual supplied with crane and applicable attachments.
- Store Operator Information Manual and Service Manual in operator's cab.

If Operator Information Manual or Service Manual is missing from cab, contact your Manitowoc dealer for a new one.

1

2

3

4

5

6

7

3

9

10

See end of this manual for Alphabetical Index

SECTION 1	Introduction
Continuous Innovation	1-
Safety Messages	
General	
Safety Alert Symbol	
Signal Words	
Safe Maintenance Practices.	
Maintenance Instructions	
Safe Maintenance Practices	
Environmental Protection	
Identification and Location of Components	
Basic Crane	
Front	
Top	
Left Side	
Left Side – S/N18001082 & Newer	
Right Side	
Rear	
Carbody/Crawler	1-1
Operator Cab/Controls	
Cummins Engine Tier 3	
Cummins Engine Tier 4	
Boom Butt and Insert.	
Mast Butt	
Description of Operation.	
General Abbreviations	
Solenoid Valve Identification	
General Operation	
Hydraulic Components	
Main Pressure Monitoring	
Accessory Systems	
Basic Operation	
Engine Controls	
Drum Identification	
Epic® Control System	1-2
CAN-Bus	
Digital Display	
Rated Capacity Indicator/Limiter (RCL)	
Crane Modes	
Electrical Power to Operator's Cab	1-2
Pressure Senders and Speed Sensors	
System Faults	
Engine Faults (Tier 4)	
Operating Faults and Limit Switches	
Brake and Drum Pawl Operation	
Swing System Operation	
Swing System Components.	
Swing Brake and Swing Lock	
Swing Right or Left	
Swing Holding Brake Switch	
Travel System Operation	
Travel System Components	
Travel Brakes	
Travel Forward and Reverse	
Two-Speed Travel Operation.	
Travel Cruise	1-3

Boom Hoist System Operation	
Boom Hoist System Components	. 1-38
Boom Hoist Brake and Pawl	. 1-38
Boom Hoist Raise	. 1-38
Boom Hoist Lower	. 1-41
Main Hoist 1 System	. 1-42
Main Hoist 1 System Components	. 1-42
Main Hoist 1 Drum Brake	
Main Hoist 1 Raising	. 1-42
Main Hoist 1 Lowering	
Whip Line Hoist (Drum 3) System	
Whip Line Hoist System Components	
Whip Line Drum Brake	
Whip Line Hoist Raising	
Whip Line Hoist Lowering	
Main Hoist 2 System	
Main Hoist 2 System Components	
Main Hoist 2 Drum Brake	
Main Hoist 2 Raising	
Main Hoist 2 Lowering	
Mast Hoist Drum 5 System	
Mast Hoist System Components	
Mast Hoist Brake and Pawl	
Mast Raising Cylinders	
Mast Hoist Raising from Transport Position	
Mast Hoist Raising to Transport Position	
Luffing Jib Drum 6 (Optional) System	
Luffing Jib System Components	
Luffing Jib Brake and Pawl	
Luffing Jib Raise	
Luffing Jib Lower	
Accessory System Components	
Accessory Systems	
Jacking Cylinders	. 1-64
Jacking Cylinders	. 1-68
Adapter Frame Pins	. 1-70
Mast Pins	
Rigging Winch (Drum 7)	
Cab Tilt	
Crawler Pin Cylinders	. 1-78
Crawler Pin Cylinders	
SECTION 2 Hydraulic Sys	stem
Hydraulic Schematics	
Hydraulic System – General	
Checking and Replacing Hydraulic Hoses	
Hydraulic System Maintenance	
Safety	
Storing and Handling Oil.	
Storing and Handling Parts	
Inspecting System	
Hydraulic Tank Heater	
Replacing Filters	
Charge Filters	
Return Filters	
Penlacing Designant Breather	2-0 2-0

Changing Oil	
Servicing Pumps	
Tightening Hydraulic Connections	
Pipe Thread Connection	2-12
SAE Straight Thread Connection	2-12
ORS Connection	2-13
Split Flange Connection	2-14
SAE Flare Connection	
Pressure Sender Replacement	
Disc Brake Operational Test	
Shop Procedures	
Initial Oil Fill	
Initial Engine Start-Up	
Accessory System Checks	
Travel Handle and Speed Check	
Swing and Drum Speed Checks	
Hydraulic System Specifications - 18000	
Pumps	
Motors	
Hydraulic System Calibration Procedures	
Calibration Description.	
Pressure Sender Calibration	
Control Calibration	
Pump Pressure Test	2.2.2
Charge Pressure Check	2.26
Hydraulic System Adjustment Procedures	
High Pressure Adjustment	
Charge Pressure Adjustment	
Pump Neutral Adjustment	
Motor Leakage Test	
Loop Flushing Valve Adjustment	
Manual Override Tests	
Counterbalance Valves Adjustment	
Hydraulic Tank Level Sensor Calibration	
Empty Calibration	
Full Cold Calibration	2-43
OFOTION O	
SECTION 3Electric	-
Electrical Schematics	
Checking and Replacing Electrical Components	
Circuit Breaker Identification	
Test Voltages	
CAN Bus Nodes	
Pumps and Motors	
Alphabetical Index of Components	
Node Heading Descriptions	
Abbreviations	
Checking Electrical Inputs/Outputs	3-30
Control Handle Voltages	3-30
Dielectric Grease	3-33
Digital Display	3-34
Crane Operating Conditions	
Operating Limits	
System Faults	
Function Speed/Torque Adjustment	
Adjustment	2.40

Crane Diagnostics	
General	
Drum 1	3-40
Drum 2	3-41
Drum 3	3-41
Drum 4	3-41
Drum 5	3-42
Drum 6	
Swing (Crane)	
Trk (Travel)	
FCN (Front Console Node)	
CAN (Can Bus)	
Hydraulic System Calibration	
Speed/Torque	
Accessory System	
Wireless	
Block Level Sensor.	
Crane Mode	
Hydraulic Fan (Tier 4 only)	
Digital Input and Output Item Tables.	
Digital impat and output from rabioo	0 17
SECTION 4	Room
Automatic Boom Stop Adjustment.	
Maximum Operating Angles	
Operation	
Maintenance	
Adjustment	
Actuator Rod Replacement	
Physical Boom Stop	4 -0
Boom and Luffing Jib Angle Indicator Calibration	4 -0
Mast Angle Indicator Adjustment.	
Mast Angle Indicator	
Strap Inspection and Maintenance	
Inspection	
Identifying Straps	
Replacement Specifications	
Storing Straps	
Removing Straps from Service	
Inspection Checklist	
Lattice Section Inspection and Lacing Replacement.	
Lattice Section inspection and Lating Replacement	4 -10
CECTION F	∐aiata
SECTION 5	
Hoist Drawings	
Boom Hoist Pawl Adjustment	
General	
Actuator Removal	
Actuator Installation and Adjustment	
Mast Hoist Pawl Maintenance	
General	
Maintenance	
Speed Sensor Adjustment.	
Hydraulic Motors with Speed Sensors	
Speed Sensor Replacement	
Speed Sensor Adjustment	
Kall Limit Adulstment	5-6

Weekly Maintenance	
Electrical Wiring	
Block-Up Limit Adjustment	
General	
Operation	
Installation	
Load Block Level Transmitter	
Disconnecting Block-Up Limit Control	5-12
Removing Upper Boom Point or Jib Point	
Storing Electric Cable	5-13
Maintenance	5-13
Adjustment	
Wire Rope Inspection and Replacement	5-15
Wire Rope Lubrication	5-15
Maintain a Wire Rope Condition Report	5-15
Periodic Comprehensive Inspection	
Replacement Criteria	
Distributing Wire Rope Wear	
Sheave, Roller, and Drum Inspection	
Load Block and Hook-and-Weight Ball Inspection	
Daily Inspection	
Yearly Inspection	5-24
OF OTHER LAND	•
SECTION 6	
Manual Release of Swing Brake and Lock	
Manual Release Procedure	6-1
SECTION 7	Dower Train
Battery Maintenance	
Battery Maintenance. Safety Information	
Battery Maintenance. Safety Information Causes Of Battery Failure	7-' 7-' 7-'
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System.	7 7 7
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance	
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test	
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test.	
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly	
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging	
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System. Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage	
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch	
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch	
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics. General	7 7 7 7 7 7 7 7 7 7
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics General On-Board Engine Diagnostics	7 7 7 7 7 7 7 7 7 7
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics General On-Board Engine Diagnostics	7 7 7 7 7 7 7 7 7 7
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics General On-Board Engine Diagnostics Engine Air Cleaner Maintenance	7 7 7 7 7 7 7 7 7 7
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics General On-Board Engine Diagnostics Engine Air Cleaner Maintenance Tier 3 and Past Production	7 7 7 7 7 7 7 7 7 7
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics. General On-Board Engine Diagnostics Engine Air Cleaner Maintenance Tier 3 and Past Production Inspection	7 7 7 7 7 7 7 7 7 7
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics. General On-Board Engine Diagnostics Engine Air Cleaner Maintenance Tier 3 and Past Production Inspection Service.	7 7 7 7 7 7 7 7 7 7
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System. Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics. General On-Board Engine Diagnostics Engine Air Cleaner Maintenance Tier 3 and Past Production Inspection Service. Tier 4 Current Production Inspection Service. Service.	7 7 7 7 7 7 7 7 7 7
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics. General On-Board Engine Diagnostics Engine Air Cleaner Maintenance Tier 3 and Past Production Inspection Service. Tier 4 Current Production Inspection Service. Engine Clutch Adjustment	7
Battery Maintenance. Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics. General On-Board Engine Diagnostics Engine Air Cleaner Maintenance Tier 3 and Past Production Inspection Service. Tier 4 Current Production Inspection Service Engine Clutch Adjustment Operation	7
Battery Maintenance Safety Information Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics. General On-Board Engine Diagnostics Engine Air Cleaner Maintenance Tier 3 and Past Production Inspection Service. Tier 4 Current Production Inspection Service. Engine Clutch Adjustment Operation Adjustment.	7
Causes Of Battery Failure Multiple Battery System Maintenance Open-Circuit Voltage Test High Resistance Test. Quarterly Charging Storage Battery Disconnect Switch Engine Diagnostics General On-Board Engine Diagnostics Engine Air Cleaner Maintenance Tier 3 and Past Production Inspection Service Tier 4 Current Production Inspection Service. Engine Clutch Adjustment Operation	7

Calibration	7-12
Engine Speed Calibration	7-12
Engine Cooling System	7-13
General	
Operation	7-13
Maintenance	
Engine Belt Routing	
Tier 3 Engine	
Tier 4 Engine	
Diesel Particulate Filter — Tier 4.	
General	
Regeneration	
Maintenance	
SECTION 8	. Under Carriage
Turntable Bearing Bolt Torque	
Torque Requirements.	
Crawler Adjustment	
Maintenance	
Tread Slack Adjustment	
Hydraulic Hand Pump	
Assembly	
Maintenance	
Air Removal	
Operation	
opolation	
SECTION 9	Lubrication
Lubrication	
SECTION 10	T
General Troubleshooting.	
Safety Summary	
General Troubleshooting.	
Troubleshooting Charts	
Troubleshooting Charts	10-3

SECTION 1 INTRODUCTION

TABLE OF CONTENTS

Continuous Innovation	
Safety Messages	
General	
Safety Alert Symbol	
Signal Words	
Safe Maintenance Practices	
Maintenance Instructions	
Safe Maintenance Practices	
Environmental Protection	
Identification and Location of Components	
Basic Crane	
Front	
Top	
Left Side	
Left Side – S/N18001082 & Newer	
Right Side	
Rear	
Carbody/Crawler	
Operator Cab/Controls	
Cummins Engine Tier 3	
Cummins Engine Tier 4	
Boom Butt and Insert	
Mast Butt	
Description of Operation	
General Abbreviations	
Solenoid Valve Identification	
General Operation	
Hydraulic Components	1-20
Hydraulic Tank	
Shutoff Valves	
Charge Filters (Past Production)	
Suction Manifolds	
Return Manifolds	
Hydraulic Fluid Cooler	
Supercharge Pumps (Past Production)	
Charge Pressure	
Hydraulic Motors	
Main Pressure Monitoring	
Accessory Systems	
Basic Operation	
Engine Controls	
Drum Identification	
Epic® Control System	
CAN-Bus	
Digital Display	
Rated Capacity Indicator/Limiter (RCL)	
Crane Modes	
Electrical Power to Operator's Cab	
Pressure Senders and Speed Sensors	
System Faults	
Engine Faults (Tier 4)	. 1-∠0

Operating Faults and Limit Switches	
Brake and Drum Pawl Operation	1-28
Swing System Operation	1-30
Swing System Components	1-30
Swing Brake and Swing Lock	1-30
Swing Right or Left	
Swing Holding Brake Switch	1-31
Travel System Operation	
Travel System Components	
Travel Brakes.	
Travel Forward and Reverse	
Two-Speed Travel Operation	
Travel Cruise	
Boom Hoist System Operation	
Boom Hoist System Components	
Boom Hoist Brake and Pawl	
Boom Hoist Raise	
Boom Hoist Lower	
Main Hoist 1 System	1-42
Main Hoist 1 System Components	1-42
Main Hoist 1 Drum Brake	1-42
Main Hoist 1 Raising	1-42
Main Hoist 1 Lowering	
Whip Line Hoist (Drum 3) System	
Whip Line Hoist System Components	
Whip Line Drum Brake	
Whip Line Hoist Raising	
Whip Line Hoist Lowering	
Main Hoist 2 System.	
Main Hoist 2 System Components	
Main Hoist 2 Drum Brake	
Main Hoist 2 Raising	
Main Hoist 2 Lowering	
Mast Hoist Drum 5 System	1-54
Mast Hoist System Components	1-54
Mast Hoist Brake and Pawl	1-54
Mast Raising Cylinders	
Mast Hoist Raising from Transport Position	1-54
Mast Hoist Raising to Transport Position	1-58
Luffing Jib Drum 6 (Optional) System	1-60
	1-60
	1-60
	1-60
	1-62
	1-63
	1-63
	1-64
· ·	1-64
	1-65
	1-68
	1-70
	1-72
1.199.19 11.1011 (=16.11 / 1.111111111111111111111111111111	1-74
Cab Tilt	
Crawler Pin Cylinders	
Crawler Pin Cylinders	1_78

SECTION 1 INTRODUCTION

WARNING

California Proposition 65

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

Battery posts, terminals, and related accessories contain chemical lead and lead compounds, chemicals known to the State of California to cause cancer, birth defects, and other reproductive harm. Wash hands after handling.

California Spark Arrestor

Operation of this equipment may create sparks that can start fires around dry vegetation. A spark arrestor may be required. The owner/operator should contact local fire agencies for laws or regulations relating to fire prevention requirements.

CONTINUOUS INNOVATION

Due to continuing product innovation, the information in this manual is subject to change without notice. If you are in doubt about any procedure, contact your Manitowoc dealer or the Manitowoc Crane Care Lattice Team.

SAFETY MESSAGES

General

The importance of safe operation and maintenance cannot be over emphasized. Carelessness or neglect on the part of operators, job supervisors and planners, rigging personnel, and job site workers can result in their death or injury and costly damage to the crane and property.

To alert personnel to hazardous operating practices and maintenance procedures, safety messages are used throughout the manual. Each safety message contains a safety alert symbol and a signal word to identify the hazard's degree of seriousness.

Safety Alert Symbol

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible death or injury.

Signal Words

DANGER

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION

Used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

CAUTION

Without the safety alert symbol, identifies potential hazards that could result in property damage.

NOTE: Highlights operation or maintenance procedures.

SAFE MAINTENANCE PRACTICES

WARNING

Importance of safe maintenance cannot be over emphasized. Carelessness and neglect on part of maintenance personnel can result in their death or injury and costly damage to the crane or property.

Safety information in this publication is intended only as a guide to assist qualified maintenance personnel in safe maintenance. Manitowoc cannot foresee all hazards that will arise in the field, therefore, *safety remains responsibility of maintenance personnel and crane owner*.

Maintenance Instructions

To ensure safe and proper operation of Manitowoc cranes, they must be maintained according to the instructions contained in this manual and the Operator Manual provided with the crane.

Crane maintenance and repair must be performed by personnel who by reason of training and experience are thoroughly familiar with the crane's operation and required maintenance. These personnel shall read the Operator Manual and Service/Maintenance Manual before attempting any maintenance procedure. If there is any question regarding maintenance procedures or specifications, contact your Manitowoc dealer for assistance.

Training/qualification of maintenance personnel is responsibility of crane owner.

Safe Maintenance Practices

- Perform the following steps (as applicable) before starting a maintenance procedure:
 - **a.** Park crane where it will not interfere with other equipment or operations.
 - Lower all loads to ground or otherwise secure them against movement.
 - c. Lower boom onto blocking at ground level, if possible, or otherwise secure boom against dropping.
 - **d.** Move all controls to off and secure all functions against movement by applying or engaging all brakes, pawls, or other locking devices.
 - e. Stop engine and render starting means inoperative.
 - f. Place a warning sign at start controls alerting other personnel that crane is being serviced and engine must not be started. Do not remove sign until it is safe to return crane to service.

2. Do not attempt to maintain or repair any part of crane while engine is running, unless absolutely necessary.

If engine must be run, keep your clothing and all parts of your body away from moving parts. *Maintain constant verbal communication between person at controls and person performing maintenance or repair procedure.*

- 3. Wear clothing that is relatively tight and belted.
- 4. Wear appropriate eye protection and approved hard hat.
- 5. Never climb onto or off a moving crane. Climb onto and off crane only when it is parked and only with operator's permission.

Use both hands and handrails, steps and ladders provided to climb onto and off crane.

Lift tools and other equipment which cannot be carried in pockets or tool belts onto and off crane with hand lines or hoists.

- 6. Boom and gantry are not intended as ladders. Do not attempt to climb lattice work of boom or gantry to get to maintenance points. If boom or gantry is not equipped with an approved ladder, lower them before performing maintenance or repair procedures.
- **7.** Do not remove cylinders until working unit has been securely restrained against movement.
- 8. Pinch points are impossible to eliminate. Watch for them closely.
- **9.** Pressurized air, coolant, and hydraulic oil can cause serious injury. Make sure all air, coolant, and hydraulic lines, fittings, and components are tight and serviceable.

Do not use your hands to check for air and hydraulic oil leaks:

- Use a soap and water solution to check for air leaks (apply to fittings and lines and watch for bubbles).
- Use a piece of cardboard or wood to check for coolant and hydraulic oil leaks.
- **10.** Relieve pressure before disconnecting air, coolant, and hydraulic lines and fittings.
- **11.** Do not remove radiator cap while coolant is hot or under pressure. Stop engine, wait until pressure drops and coolant cools, then slowly remove cap.
- **12.** Avoid battery explosion: do not smoke while performing battery maintenance, do not short across battery terminals to check its charge.
- **13.** Read safety information in battery manufacturer's instructions before attempting to charge a battery.

- **14.** Avoid battery acid contact with skin and eyes. If contact occurs, flush area with water and immediately consult a doctor.
- **15.** Stop engine before refueling crane.
- **16.** Do not smoke or allow open flames in refueling area.
- **17.** Use a safety-type can with an automatic closing cap and flame arrestor for refueling.
- **18.** Hydraulic oil can also be flammable. Do not smoke or allow open flames in area when filling hydraulic tanks.
- **19.** Never handle wire rope with bare hands. Always wear heavy-duty gloves to prevent being cut by broken wires.
- **20.** Use extreme care when handling coiled pendants. Stored energy can cause coiled pendants to uncoil quickly with considerable force.
- **21.** When inflating tires, use a tire cage, a clip-on inflator, and an extension hose which permits standing well away from tire.
- **22.** Only use cleaning solvents which are non-volatile and non-flammable.
- **23.** Do not attempt to lift heavy components by hand. Use a hoist, jacks, or blocking to lift components.
- **24.** Use care while welding or burning on crane. Cover all hoses and components with non-flammable shields or blankets to prevent a fire or other damage.
- **25.** To prevent damage to crane parts (bearings, cylinders, swivels, slewing ring, computers, etc.), perform the following steps **before welding on crane**:
 - Disconnect all cables from batteries.
 - Disconnect output cables at engine junction box.
 - Attach ground cable from welder directly to part being welded and as close to weld as possible.

Do not weld on engine or engine mounted parts (per engine manufacturer).

- **26.** Disconnect and lock power supply switch before attempting to service high voltage electrical components and before entering tight areas (such as carbody openings) containing high voltage components.
- 27. When assembling and disassembling booms, jibs, or masts on ground (with or without support of boom rigging pendants or straps), securely block each section to provide adequate support and alignment.

Do not go under boom, jib, or mast sections while connecting bolts or pins are being removed.

- 28. Unless authorized in writing by Manitowoc, do not alter crane in any way that affects crane's performance (to include welding, cutting, or burning of structural members or changing pressures and flows of air/hydraulic components). Doing so will invalidate all warranties and capacity charts and make crane owner/user liable for any resultant accidents.
- **29.** *Keep crane clean.* Accumulations of dirt, grease, oil, rags, paper, and other waste will not only interfere with safe operation and maintenance but also create a fire hazard.
- 30. Store tools, oil cans, spare parts, and other necessary equipment in tool boxes. Do not allow these items to lie around loose in operator's cab or on walkways and stairs.
- 31. Do not store flammable materials on crane.
- 32. Do not return crane to service at completion of maintenance or repair procedures until all guards and covers have been reinstalled, trapped air has been bled from hydraulic systems, safety devices have been reactivated, and all maintenance equipment has been removed.
- **33.** Perform a function check to ensure proper operation at completion of maintenance or repair.

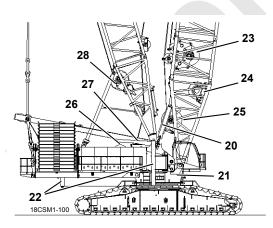
ENVIRONMENTAL PROTECTION

Dispose of waste properly! Improperly disposing of waste can threaten the environment.

Potentially harmful waste used in Manitowoc cranes includes — but is not limited to — oil, fuel, grease, coolant, air conditioning refrigerant, filters, batteries, and cloths which have come into contact with these environmentally harmful substances.

Handle and dispose of waste according to local, state, and federal environmental regulations.

When filling and draining crane components: do not pour waste fluids onto the ground, down any drain, or into any source of water.


- Always drain waste fluids into leak proof containers that are clearly marked with what they contain.
- Always fill or add fluids with a funnel or a filling pump.
- Immediately wipe up any spills.

IDENTIFICATION AND LOCATION OF COMPONENTS

See Figures $\underline{\text{1--1}}$ through $\underline{\text{1--13}}$ for graphic identification of crane components.

Basic Crane

Item	Description
1	Boom Top
2	Load Block
3	Boom Insert
4	Boom Insert (with Drum 1)
5	Boom Butt (with Drums)
6	Operator's Cab
7	Upperworks
8	Lowerworks
9	Right Side Crawler
10	Upper Counterweights
11	Live Mast
12	Mast Stop
13	Mast Straps
14	Main Mast
15	Main Hoist Wire Rope
16	Whip Line Wire Rope
17	Boom Hoist Wire Rope
18	Equalizer
19	Boom Straps
20	Telescopic Boom Stop
21	Adapter Frame
22	Jacks
23	Main Hoist (Drum 1)
24	Luffing Jib Hoist (Drum 6)
25	Main Hoist (Drum 2)
26	Mast Hoist (Drum 5)
27	Whip Line Hoist (Drum 3)
28	Boom Hoist (Drum 4)

Drum Locations

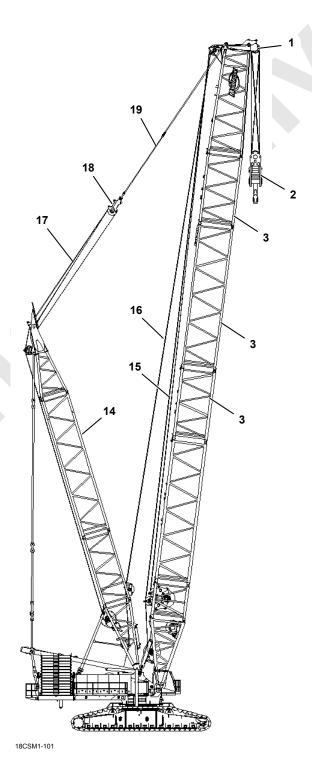
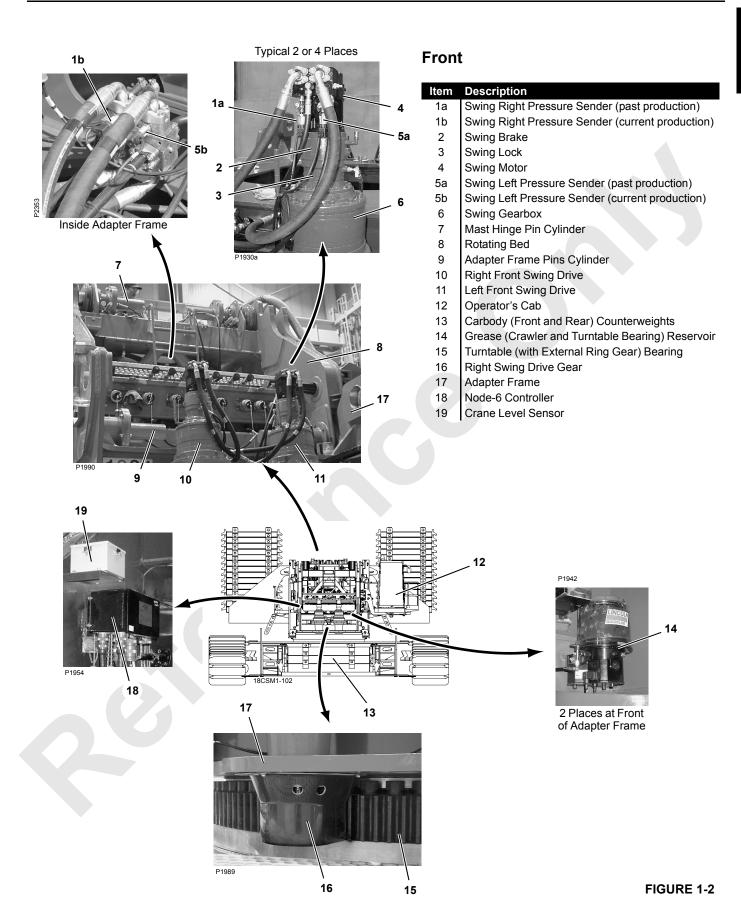



FIGURE 1-1

Top

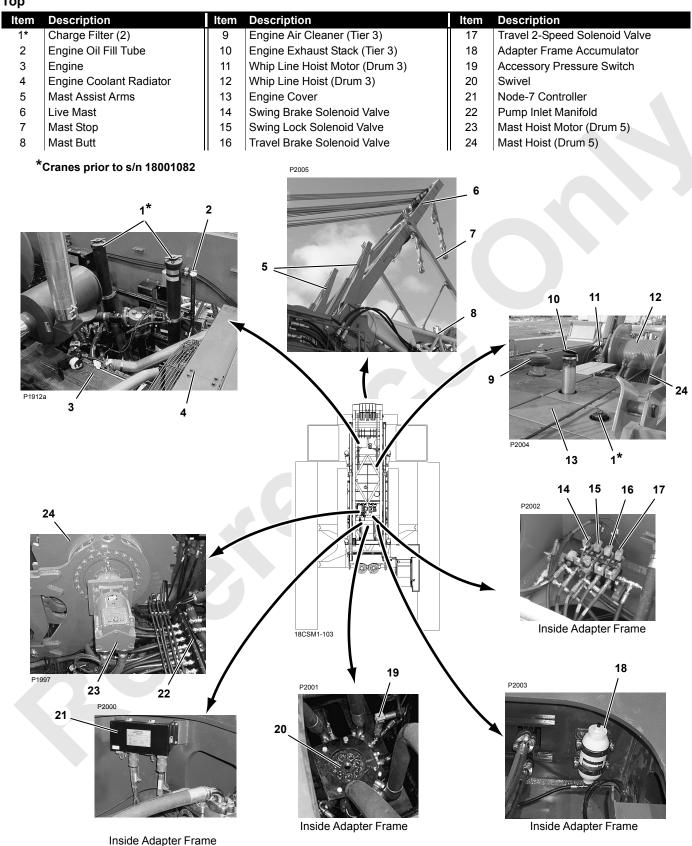
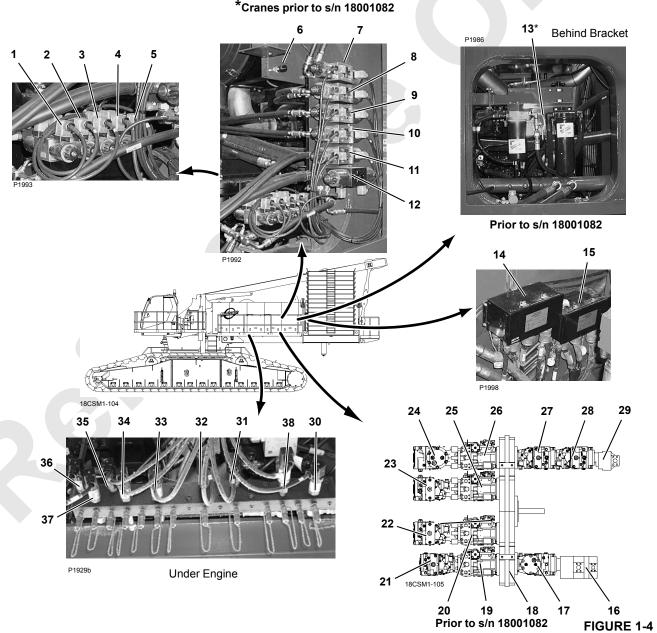



FIGURE 1-3

Left Side

Item	Description	Item	Description	Item	Description
1	Mast Pins Solenoid Valves	14	Node-3 Controller	27*	Boom Hoist A Pump (Drum 4)
2	Front Adapter Frame Pins Solenoid Val.	15	Node-4 Controller	28*	Swing Pump (Optional)
3	Rear Adapter Frame Pins Solenoid Val.	16*	Supercharge/Accessory Pump	29*	Supercharge Pump
4	Cab Tilt Solenoid Valves	17*	Boom Hoist B Pump (Drum 4)	30	Accessory System Pressure Sender
5	Boom Hinge Pins Solenoid Valves	18*	Pump Drive	31	Not Used
6	Air Cleaner Service Indicator	19*	Main Hoist Pump (Drums 1 and 3)	32	Load Drums 2 and 5 Pressure Sender
7	Left Front Jack Solenoid Valves	20*	Main Hoist Pump (Drum 2)	33	Left Travel Pressure Sender
8	Left Rear Jack Solenoid Valves	21*	Swing Pump	34	Right Travel Pressure Sender
9	Right Rear Jack Solenoid Valves	22*	Left Travel Pump	35	Load Drums 1 and 3 Pressure Sender
10	Right Front Jack Solenoid Valves	23*	Luffing Jib Hoist Pump (Drum 6)	36	Boom Hoist Pressure Sender
11	Live Mast Solenoid Valves	24*	Right Travel Pump	37	Luffing Jib Hoist Pressure Sender
12	Rigging Winch Solenoid Valves	25*	Main Hoist Pump (Drums 2 and 5)	38	High Pressure Accessory Pressure
13*	Engine Node-0 Controller (Past	26*	Main Hoist Pump (Drum 1)		Sender
	Production)				
		*	Cromps mrier to alm 40004000		

Left Side - S/N18001082 & Newer

Item	Description	Item	Description	
	Current Production	23	Luffing Jib Hoist Pump (Drum 6)	
13	Engine Node-0 Controller (S/N 18001082 & Newer)	24	Right Travel Pump	
16	Pump Drive Accessory Pump	25	Main Hoist Pump (Drums 2 and 5)	
17	Boom Hoist B Pump (Drum 4)	26	Main Hoist Pump (Drum 1)	
18	Pump Drive	27	Boom Hoist A Pump (Drum 4)	
19	Main Hoist Pump (Drums 1 and 3)	28	Swing Pump (Optional)	
20	Main Hoist Pump (Drum 2)	29	Engine Drive Accessory Pump	
21	Swing Pump	30	Cooler Fan Pump (Tier 4 Equipped)	
22	Left Travel Pump			

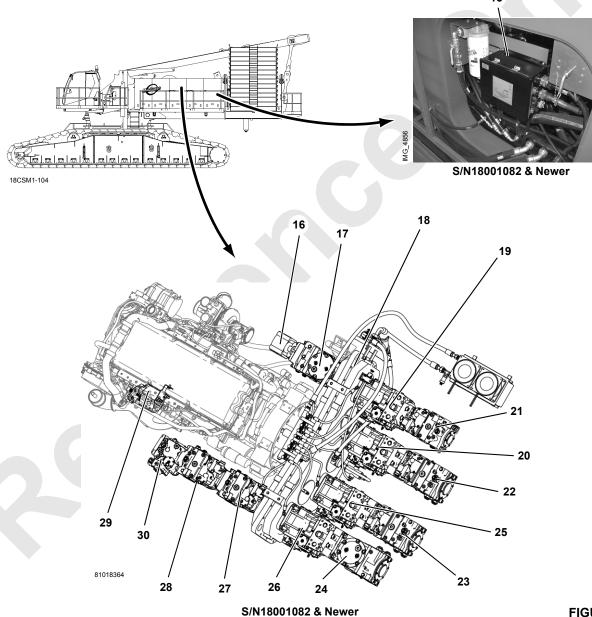


FIGURE 1-5

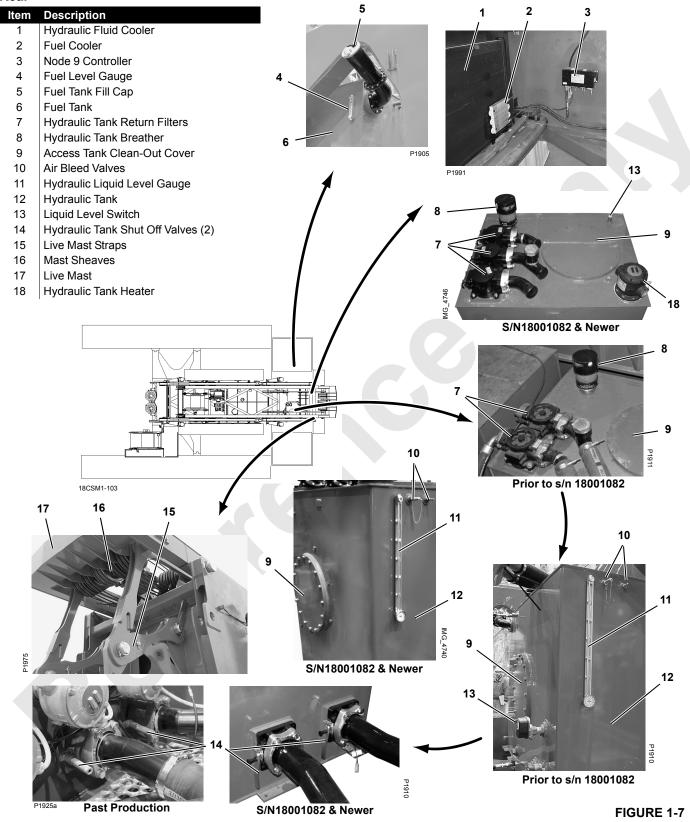

Right Side Item Description Mast Hoist (Drum 5) Brake Solenoid Valve 2 Mast Hoist (Drum 5) Pawl Solenoid Valve 3 Drum 3 Diverting Solenoid Valve 4 Drum 5 Diverting Solenoid Valve 5 Boom Stop Maximum Up Limit Switch 6 Hand-Held Radio Remote Receiver 7 Node-5 Controller 8* Charge Filter Alarm Sensor 9* Charge Filter (2) 10 Hydraulic Thermo Bypass Valve 11 Engine Oil Dipstick Ether Starting Aid 12 Engine Oil Fill 13 14 Jack Pad 15 Jack Pad Support Rod Pump 16 Rotating Bed Jack (2) (Reference) *Cranes prior to s/n 18001082 16 12 14 11 13 10

FIGURE 1-6

S/N18001082 & Newer

*Cranes prior to s/n 18001082

Rear

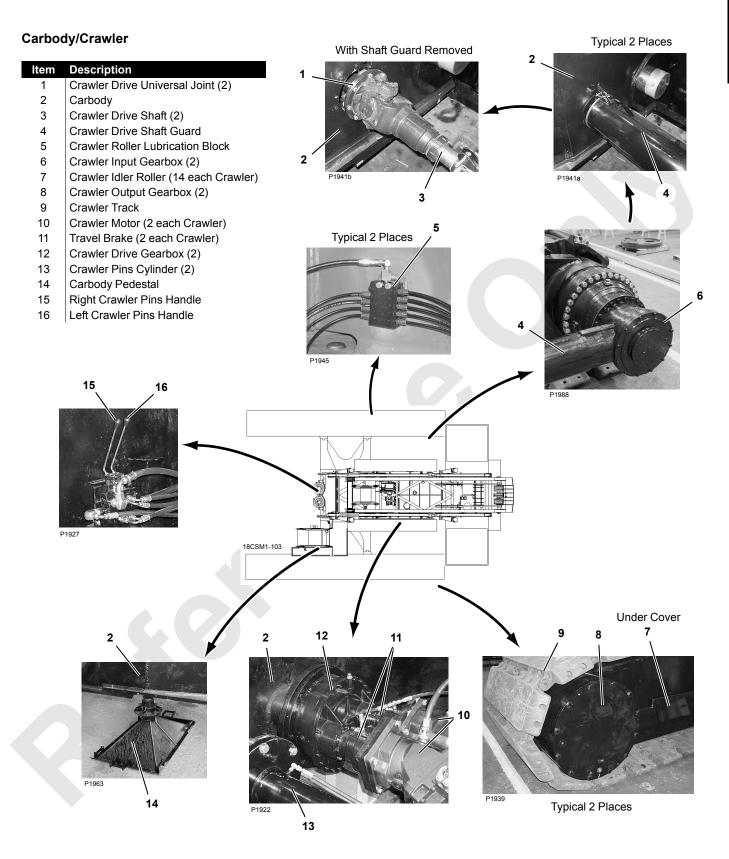


FIGURE 1-8

Operator Cab/Controls

Item	Description	Item	Description
1	Engine Foot Throttle	13	Test Point Receptacle
2	Node-1 Master Controller	14	Horn/Travel Cruise Panel
3	Node-2 Side Console Controller	15	Main Console
4	Front Console (with RCL)	16	Boom or Luffing Jib Hoist Handle
5	Drum Handles	17	Engine Hand Throttle
6	Engine Start/Travel Controls Console	18	Hand-Held Radio Remote
7	Crawler Left and Right Handles	19	Circuit Breaker A8CB1 (24/12 Volt Converter)
8	Windshield Wiper Switches	20	Circuit Breaker A8CB2 (A/C Heater Power)
9	Customer Panel (Optional)	21	Circuit Breaker A8CB3 (Windshield Wipers)
10	Radio (Optional)	22	Circuit A8CB4 (Panel Lights)
11	12 Volt Power Receptacle (2)	23	24/12 Volts Converter
12	Foot Activated Horn		

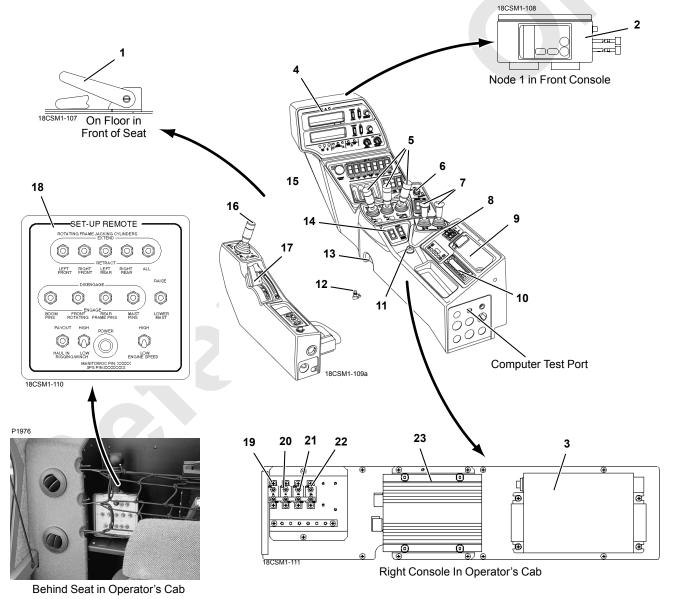
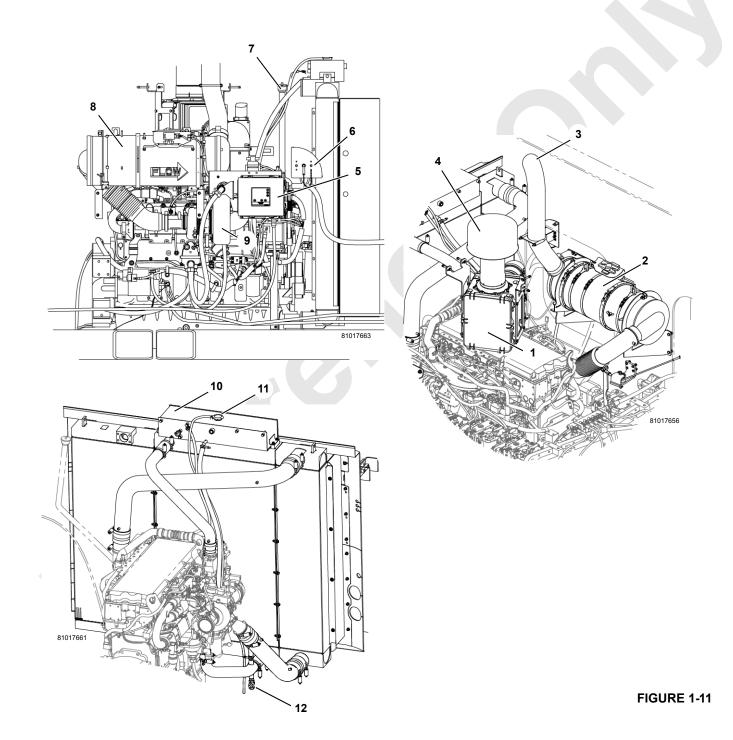


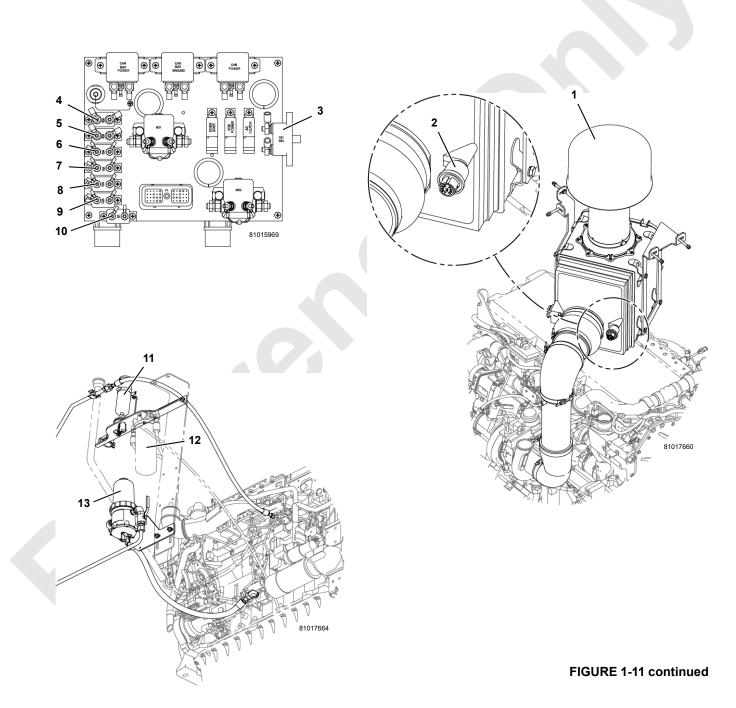
FIGURE 1-9

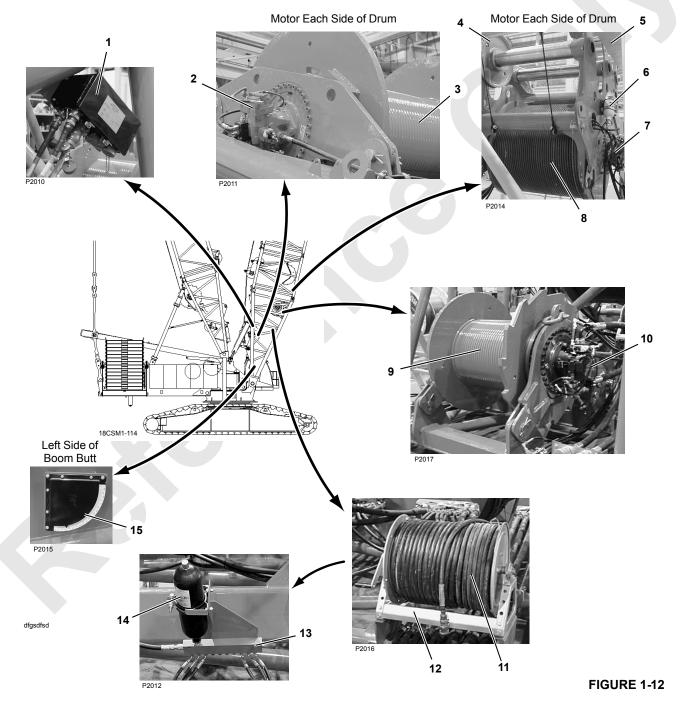


Cummins Engine Tier 3

Cummir	ns Engine Tier 3		
Item	Description	Item	Description
1	Engine Air Cleaner	17	Engine Node-0 Controller
2	Pump Drive	18	Engine Water Filter
3	Engine Exhaust Stack	19	Engine Alternator
4	Engine Muffler	20	Engine Starter Motor (2)
5	Fuel Shut Off Valve	21	Engine Starter Solenoid (2)
6	Fuel Filter	22	Ether Starting Aid
7	Oil Filter	23	Coolant Level Sensor
8	Circuit Breaker CB1 (main system power)	24	Battery (2)
9	Circuit Breaker CB2 (Engine ECM)	25	Air Conditioning Low/High Pressure Switch
10	Circuit Breaker CB3 (Engine ECM)	26	Fuel Pump
11	Circuit Breaker CB4 (Engine Bus Run/Stop)	27	Fuel Shut Off
12	Circuit Breaker CB5 (Engine Ether Start)	28	ECM (Engine Control Module)
13	Circuit Breaker CB6 (Engine Start Solenoid)	29	Engine Oil Dipstick
14	Circuit Breaker CB7 (CAN System Power)	30	Radiator Fill
15	Circuit Breaker CB8 (Cab Power)	31	Radiator Coolant Sight Gauge
16	Battery Disconnect Switch	32	Radiator Drain
	1 4	6	7
	P1987 Top of Engine	P1!	Left Side of Rotating Bed
30 <i></i> 31 <i>-</i>	P1914 Under Engine		15
	29 28 28 Engine - Left Side 27 20 21 21	20	23 24 16 17 18 Engine - Right Side FIGURE 1-10

Cummins Engine Tier 4


Item	Description	Item	Description
1	Engine Air Cleaner	7	Engine Oil Fill Tube
2	Diesel Particulate Filter (DPF)	8	Diesel Particulate Filter (DPF)
3	Engine Exhaust Stack	9	Engine Oil Filter
4	PreCleaner	10	Cooler Surge Tank
5	Engine Node	11	Cooler Fill Cap
6	Battery Disconnect	12	Cooler Drain


Cummins Engine Tier 4 (Continued)

Item	Description	Item	Description
1	Air Intake Pre-Cleaner	8	Circuit Breaker CB6 (Engine Start Solenoid)
2	Air Filter Indicator	9	Circuit Breaker CB7 (CAN System Power)
3	Circuit Breaker CB1 (main system power)	10	Circuit Breaker CB8 (Cab Power)
4	Circuit Breaker CB2 (Engine ECM)	11	Ether Bottle
5	Circuit Breaker CB3 (Engine ECM)	12	Fuel Filter, High Pressure
6	Circuit Breaker CB4 (Engine Bus Run/Stop)	13	Water In Fuel Filter, Low Pressure
7	Circuit Breaker CB5 (Engine Ether Start)		

Boom Butt and Insert

Item	Description	Item	Description
1	Node-8 Controller	9	Luffing Jib Hoist (Drum 6)
2	Main Hoist Motor (Drum 2)	10	Luffing Jib Hoist Motor (Drum 6)
3	Main Hoist (Drum 2)	11	Electrical Boom Cable
4	Wire Rope Sheave	12	Electrical Cable Reel
5	Boom Insert	13	Hydraulic Manifold Block
6	Boom Insert Accumulator	14	Boom Butt Accumulator
7	Main Hoist Motor (Drum 1)	15	Boom Angle Indicator
8	Main Hoist (Drum 1)		

Mast Butt

Description
Mast Butt Accumulator
Boom Hoist (Drum 4)
Motor Control
Boom Hoist Motor (Drum 4)
Boom Hoist Brake (Inside Gearbox)
Motor Speed Sensor
Loop Flushing Valve
Pawl Electrical Junction Box
Boom Hoist Pawl

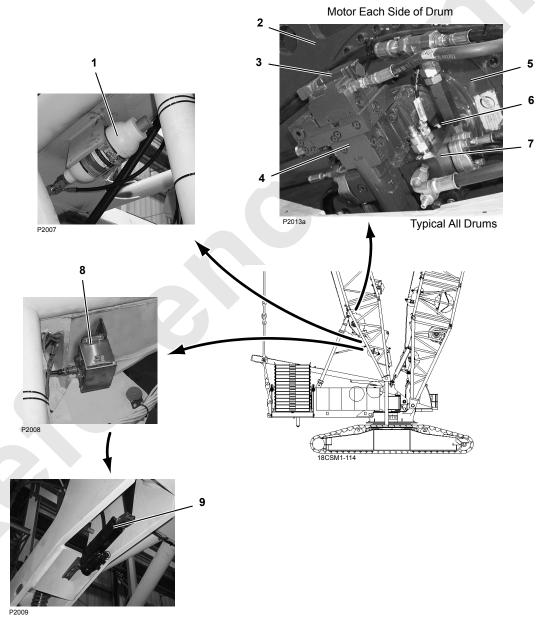


FIGURE 1-13

DESCRIPTION OF OPERATION

General Abbreviations

1			
Α	Amber Light		
ACR	Air Conditioning Relay		
AH	Auxiliary Hoist		
AL	Auto Lube Pump		
ALT	Alternator		
AUX	Auxiliary		
BH	Boom Hoist		
CAN	Controller Area Network		
DPF	Diesel Particulate Filter		
EDC	Electrical Displacement Control (Pump)		
EFC	Electronic Fuel Control		
EPIC	Electrical Processed Independent Control		
ER	Ether Relay		
ES	Ether Start		
FS	Fuel Solenoid		
FSR	Fuel Solenoid Relay		
G	Green Light		
GND	Ground (Electrical)		
HDC	Hydraulic Displacement Control		
HS	Hydraulic Solenoid		
LD	Load Drum		
LH	Luffing Hoist		
LJ	Luffing Jib		
LT	Left Travel		
M/C	Motor Control		
MS1 & 2	Start Solenoid Relay		
PC	Programmable Controller		
P/C	Pump Control		
PCOR	Pressure Compensated Over-Ride		
PCP	Pressure Control Pilot (Motor)		
PCR	Pressure Compensated Regulator		
PCV	Pressure Control Valve		
PM	Pawl Motor		
PWR	Power (Electrical)		
R	Red Light		
RT	Right Travel		
S	Swing		
SOL	Solenoid		
SS	Starter Solenoid		
VDC	Volts Direct Current		
W	White Light		
	I.		

Solenoid Valve Identification

HS-1	Swing Brake
HS-2	Swing Lock In
HS-3	Swing Lock Out
HS-4	Travel Brake
HS-5	Travel Two-speed
HS-6	Boom Hoist (Drum 4) Brake
HS-7	Main Hoist 1 (Drum 1) Brake
HS-8	Whip Line Hoist (Drum 3) Brake
HS-9	Whip Line Hoist (Drum 3) Diverting
HS-10	Main Hoist 2 (Drum 2) Brake
HS-11	Mast Hoist (Drum 5) Brake
HS-12	Mast Hoist (Drum 5) Pawl Out
HS-13	Mast Hoist (Drum 5) Pawl In
HS-14	Mast Hoist (Drum 5) Diverting
HS-15	Luffing Jib (Drum 6) Brake
HS-16	Accessory System Proportional
HS-17	Right Front Jack Extend
HS-18	Right Front Jack Retract
HS-19	Left Front Jack Extend
HS-20	Left Front Jack Retract
HS-21	Right Rear Jack Extend
HS-22	Right Rear Jack Retract
HS-23	Left Rear Jack Extend
HS-24	Left Rear Jack Retract
HS-25	Boom Pins Engage
HS-26	Boom Pins Disengage
HS-27	Rear Adapter Frame Pins Engage
HS-28	Rear Adapter Frame Pins Disengage
HS-29	Front Adapter Frame Pins Engage
HS-30	Front Adapter Frame Pins Disengage
HS-31	Mast Pins Engage
HS-32	Mast Pins Disengage
HS-33	Mast Cylinders Raise
HS-34	Mast Cylinders Lower
HS-35	Rigging Winch (Drum 7) Pay Out
HS-36	Rigging Winch (Drum 7) Haul In
HS-37	Cab Tilt Up
HS-38	Cab Tilt Down
HS-39	Hydraulic Pumps Warm-up

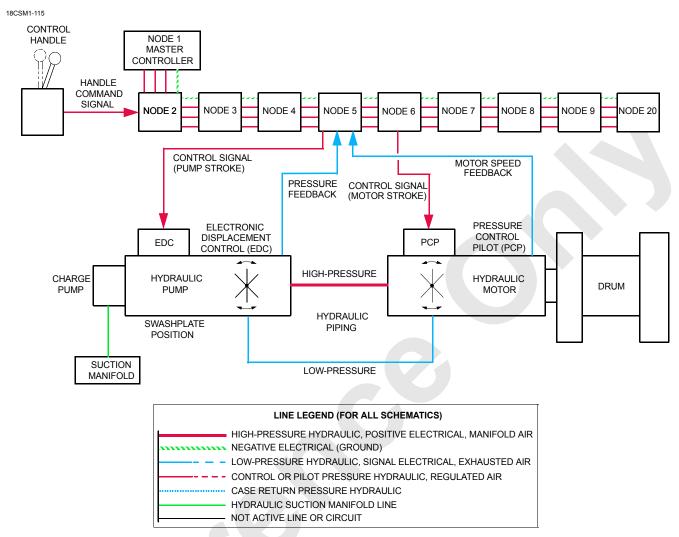


FIGURE 1-14

GENERAL OPERATION

See Figure 1-14 for the following procedure.

This Service/Maintenance manual describes the standard and optional equipment available for the crane. Disregard any equipment your crane does not have. The 18000 MAX-ER™ attachment is not covered in this manual.

The Model 18000 operating system is an EPIC[®] (Electrical Processed Independent Control) with Can-Bus technology. The can-bus system uses multiple nodes that contain remote controllers. The remote node controllers communicate with node-1 master controller by sending information data packets over a two-wire bus line. The data packets are tagged with addresses that identify each system component.

With the can-bus system, the independently powered pumps, motors, and cylinders provide controller driven control logic, pump control, motor control, on-board diagnostics, and service information. Crane information is shown on digital display in operator's cab.

A single diesel engine provides power to operate system pumps through a pump drive transmission. In a closed-loop hydraulic system, high-pressure hydraulic fluid from the system pump drives a hydraulic motor. Pressure develops within the closed-loop system while resistance to movement of the load on motor is overcome. When movement begins, pump volume displacement maintains motor speed. The spent hydraulic fluid from motor outlet returns directly to pump input. The crane closed loop systems are swing, right travel, left travel, boom hoist, load drums 1 and 2, and luffing jib hoist. The whip line hoist (Drum 3) and mast hoist (Drum 5) can be operated through diversion valves from main hoist drums 1 or 2.

In this Service/Maintenance manual, "enabled" means hydraulic fluid can flow in the system. Each hydraulic solenoid valve is assigned an HS number for training identification only.

Hydraulic Components

High-pressure piston pumps driven by a multi-pump drive transmission provide independent closed-loop hydraulic power for crane functions. Each system has relief valves to protect for overload or shock. Each hydraulic system operation is explained in different sections of this manual.

Hydraulic Tank

Hydraulic tank has a breather, suction filter, return filter, sight gauge, temperature gauge, temperature sensor, and level sensor. Hydraulic tank has two sections: a suction section and a return section.

The suction section has two mesh strainers that allow fluid bypass around strainer at 3 psi (0,21 bar) if they become plugged. The breather protects the tank from excessive pressures (opens at 3 psi [0,21bar]) or vacuum (opens at 1.5 in HG [38 mm HG]).

The return section has three (current production), two (past production) media filters that allow fluid bypass around filter at 25 psi (1,7 bar) if they become plugged. A diffuser inside tank return line reduces turbulence created by fluid returning to tank.

Digital display indicates when hydraulic tank fluid level is low, hydraulic fluid temperature is too high, or filter blockage.

Tank hydraulic strainers and filters remove contaminants from fluid. System filtration does not transform deteriorated fluid into purified quality fluid. A program to test or replace hydraulic fluid at scheduled times must be established for efficient operation of all hydraulic systems.

NOTE: See Lubrication Guide in Section 9 of this manual, for recommended replacement of hydraulic fluid.

Shutoff Valves

Two manual shutoff valves are located between the hydraulic tank and suction manifold. Close shutoff valves when performing maintenance on hydraulic systems. Open shutoff valves before starting engine.

Charge Filters (Past Production)

Accessory pumps supply hydraulic fluid through charge filters to high pressure accessory manifold. Charge filter elements must be replaced when system fault alerts are enabled and digital display indicates that charge filters need to be serviced.

Suction Manifolds

Suction manifolds supply hydraulic fluid to all system pumps. Each hydraulic system draws hydraulic fluid from a suction manifold as needed.

Return Manifolds

Return fluid from closed-loop relief valves, brake valves, motor servos, cylinders, pump case drain, and motor case drain is routed to main return manifold or cooler return manifolds before returning to hydraulic tank. The final cooler return manifold has a 20 psi (1,4 bar) bypass that allows fluid to bypass cooler if it becomes plugged.

Hydraulic Fluid Cooler

If hydraulic fluid temperature is above 140°F (60°C), a valve opens to cooler to allow return hydraulic fluid through cooler before returning to tank. If hydraulic fluid temperature is below 140°F (60°C), cooler valve closes to allow return hydraulic fluid flow directly to tank.

Supercharge Pumps (Past Production)

See Sauer-Sundstrand Series 90 Service Manual for a description of a hydraulic piston pump.

The supercharge pump is a fixed displacement gear pump that draws hydraulic fluid from tank suction manifold and supplies make-up hydraulic fluid to supercharge manifold.

The supercharge accessory pump is a fixed displacement gear pump that draws hydraulic fluid from tank suction manifold and supplies hydraulic fluid to accessory system and high pressure accessory system.

Accessory Pumps (Current Production)

The two accessory pumps are fixed displacement gear pumps that draw hydraulic fluid from tank suction manifold and supply high pressure hydraulic fluid to the high pressure accessory manifold. One pump is mounted on the left forward side engine and one is mounted on the right forward side pump drive.

Hydraulic Pumps

See Sauer-Sundstrand Series 90 Service Manual for a description of a hydraulic piston pump.

All main pumps are variable displacement, axial piston pumps that operate in a bi-directional closed-loop system. Main host 1 (Drum 1), main host 2 (Drum 2), boom hoist (Drum 4), and swing systems have two hydraulic pumps. Travel system has a separate pump for each crawler.

Each pump contains:

- Charge pump
- EDC (Electrical Displacement Control)
- Cylinder block where pistons are positioned axially around a drive shaft
- · Charge pressure relief valve
- · Two multifunction (relief) valves

Each system pump has a gerotor type gear charge pump that is internally mounted on the end of each pump system driveshaft. System charge pump draws fluid directly from the tank suction manifold and delivers it to closed-loop system at a charge pressure of approximately 350 psi (24 bar). Charge pressure depends on engine load/speed, pressure relief valve settings, and hydraulic system efficiency.

When a system control handle is moved, a node controller sends a variable zero to 24 volt output to pump EDC as required for handle command direction. Pump EDC tilts swashplate to stroke pump in the command direction. Pump pistons move within cylinder block as the block rotates. The longer stroke of each piston draws in return fluid from system motor. As the stroke shortens, hydraulic fluid is pushed out of pump piston cylinders into hydraulic piping to the motor. Pressurized hydraulic fluid from the pump turns the motor in the command direction.

Hydraulic fluid displaced by motor returns through piping to inlet side of system pump. Swashplate tilt angle determines volume of fluid that can be pumped to the motor. Increasing swashplate tilt angle increases piston stroke length, allowing more fluid to be pumped to the motor. Motor servos in drum and travel systems allow low and high speed operation. Hoist and swing system that have two pumps driving two motors have a pressure equalizing lines between pump legs A and B.

Each pump has two multifunction valves that consist of system relief valve and charge flow make-up check valve. Pump system multifunction valves control maximum system pressure and protect each pump system from damage by limiting pressure spikes in each operating direction. When preset loop system pressure is reached, multifunction valves limit system pressure by de-stroking pump or transferring fluid from high-pressure side to low-pressure side. Maximum pressure setting of multifunction valves for each pump is listed in Table 1-1. Limits should not be reached unless there is a failure in the system.

Table 1-1 Multifunction Valve Pressure Limit Settings

SYSTEM	FUNCTION	PRESSURE (BAR)
Load Drums	Hoist	6,090 (420)
(1, 2, and 3)	Lower	3,770 (260)
Boom Hoist	Up	6,090 (420)
(Drum 4)	Down	3,770 (260)
Mast Hoist	Up	6,090 (420)
(Drum 5)	Down	3,770 (260)
Luffing Jib Hoist	Up	6,090 (420)
(Drum 6)	Down	3,770 (260)

SYSTEM	FUNCTION	PRESSURE (BAR)
Swing	Left	6,090 (420)
Swilig	Right	6,090 (420)
Travel	Forward	6,090 (420)
Havei	Reverse	6,090 (420)
Cooler Fan	Port A	3,330 (230)
(Tier 4)	Port B	3,330 (230)

Charge Pressure

Charge pressure in each closed-loop system is preset at approximately 350 psi (24 bar) with a relief valve in charge pump. Charge pressure must be at preset value as lower pressures can cause a slowing or stopping of operation. If the charge pressure is set too high, the hydraulic system could be damaged. When a system control handle is in neutral the digital display indicates system charge pressure.

If any charge pressure system drops, the system brake begins to apply at approximately 200 psi (14 bar). Main system pumps de-stroke when charge pressure drops to minimum pressure.

Hydraulic Motors

See Sauer-Sundstrand Series 90 Service Manual for a description of a hydraulic motor.

Main hoist 1 (Drum 1), main hoist 2 (Drum 2), boom hoist (Drum 4), left crawler, and right crawler systems have two hydraulic motors.

Variable displacement low torque/high speed, bent axis piston hydraulic motors are used in the travel, boom hoist, and load drum systems. The swing system motor is a fixed displacement, low torque/high speed, bent axis piston hydraulic motor. Each motor contains a cylinder block, pistons, output shaft, and internal flushing valve. Boom hoist and load drums motors have a PCP (Pressure Control Pilot) valve that controls output speed/torque of the motor.

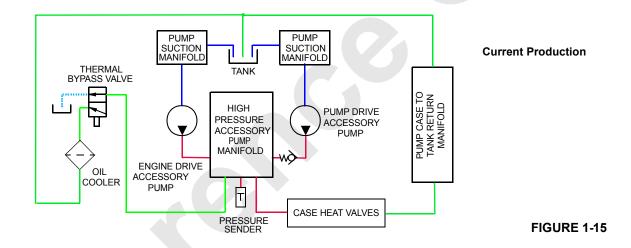
Motor cylinder block axis is tilted at an angle to output shaft with pistons fitted axially around its axis. The internal end of output shaft has a large flange face similar to pump swashplate. The motor piston ends are connected to output flange face and do not ride around the axis of rotating flange face like the pump pistons.

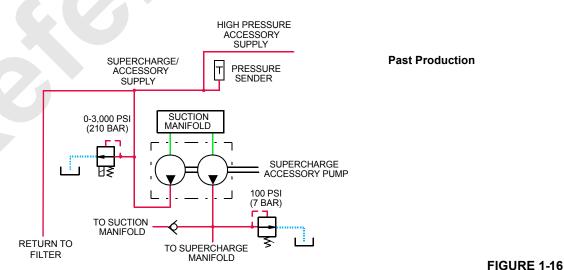
Hydraulic fluid from pump enters inlet side of motor and places a force against pistons. The retained piston ends place a thrust against output flange with a rotational torque that turns output shaft. This also rotates the cylinder block on bent axis, while tilt angle to flange face moves the pistons as they rotate. Hydraulic fluid displaced by the motor pistons, exits outlet side of motor and returns to inlet side of system pump through piping.

Main Pressure Monitoring

Load drums, boom hoist, luffing jib, swing, and track screens display and monitor system pressure. The system pressure displayed on system screen is charge pressure or greater. System pressure can also be checked at each pressure sender diagnostic coupler with a 10,000 psi (689 bar) high pressure gauge, when pump is stroked.

Accessory Systems


Crane Setup or Setup Remote mode must be selected and confirmed before the accessory system components can be enabled. The accessory pump (Current Production, Figure 1-15) supercharge pumps (Past Production, Figure 1-16) is the source of hydraulic pressure for the accessory system and high pressure accessory components.


The accessory system items that are electrically enabled with hand-held radio remote control include:

- Rotating bed jacking cylinders (four)
- Boom hinge pin cylinders
- Front and rear adapter frame pin cylinders
- Mast pins cylinders
- · Mast raising cylinders
- Rigging winch (Drum 7)
- Engine speed

Each hydraulic solenoid valve of the accessory system is open circuit type where return fluid goes directly to tank. Accessory system and high pressure accessory pressure senders monitor each accessory system pressure.

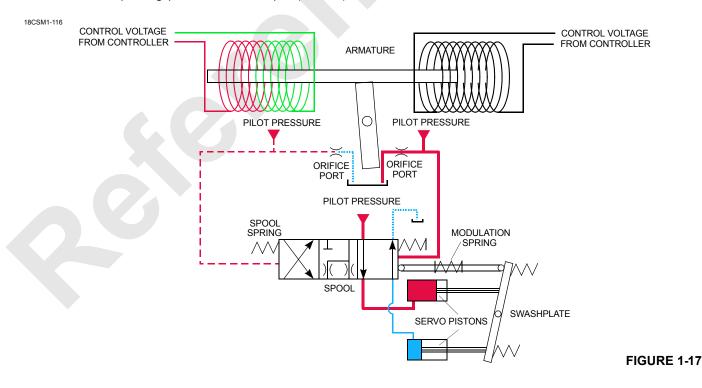
Right and left crawler pin cylinders are enabled by spring centered hand levers at front of lowerworks.

Basic Operation

See Figure 1-17 or 1-18 for the following procedure.

When a control handle is moved from neutral, an input voltage in the handle command direction is sent to node-1 controller. The component node controller sends a variable zero to 24 volt output that is divided by a resistor and applied to pump external EDC (Electrical Displacement Control). The output current magnetizes an armature (Figure 1-17) and starts to block one of the orifice ports, depending on command direction. Blockage of flow at exhaust side of right orifice port causes a pressure difference across spool. This pressure difference overcomes the resistance of spool spring and moves the spool proportionally to pressurize top servo pistons. The fluid from bottom servo pistons is routed to tank. This tilts the swashplate, stroking the pump in selected command direction. As swashplate tilts, chamber spring is pulled in the opposite direction of spool with linkage. This centers and maintains spool in a neutral position until the 16 psi (1 bar) chamber spring pressure is reached.

In travel pumps, the pressure relief and pressure-limiting sections of multifunction valves respond when relief pressure is reached. The pressure limiting function of travel pumps is set not to exceed 6090 psi (420 bar). If travel pump pressure exceeds preset pressure limit, pumps de-stroke to prevent overheating of system fluid.

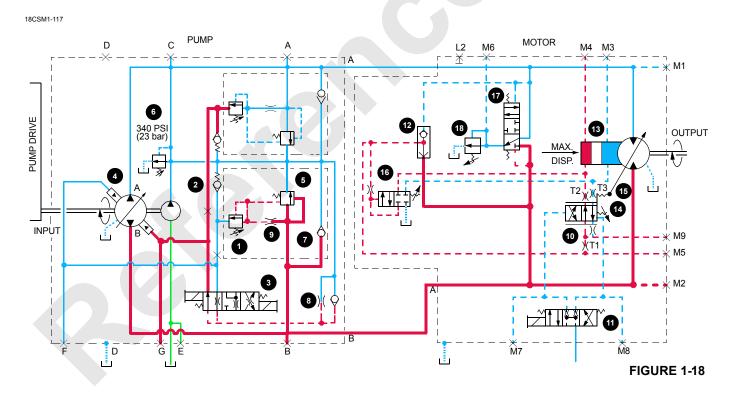

Hydraulic fluid pressure overcomes spring resistance in pressure limiting relief valve (1, Figure 1-18), shifting spool to open a line for fluid pressure. Servo check valve (2) is spring loaded with an opening pressure of 750 psi (52 bar).

Hydraulic fluid from pressure limiting relief valve flows through exhaust port of displacement control valve (3). The exhaust port has a restricted orifice that develops pressure for servo control cylinder (4) to pressurize and de-stroke pump to limit system pressure. When rapid loading produces pressure spikes, system relief valve (5) shifts. This allows high-pressure fluid to return to tank through charge pump relief valve (6). Alternatively, fluid transfers to low-pressure side of closed-loop system through charge flow make-up check valve (7).

In other system pumps, pressure limiting is controlled through relief valve section of multifunction valves only. Flow control orifice (8) is removed from pump EDC. Servo check valves are removed from pump and lines to servo control cylinders are plugged. These changes permit the pump to react quicker to control handle commands.

The pressure limiting relief valve (1) serves as pilot valve to open system relief valve (5) when desired relief pressure setting is reached. For example, if a pressure imbalance occurs on both sides of flow restrictor (9), pressure limiting valve opens and system relief valve relieves system pressure. Hydraulic fluid is directed to tank through relief valve (7) or the flow is transferred to low-pressure side of system through the make-up check valve (8).

Pump displacement depends on engine driven pump speed through pump drive and swashplate tilt angle. The engine provides power for work, while the swashplate tilt angle provides speed control. Engine speed is set and controlled with hand or foot engine throttle.


Each variable displacement motor, except travel, begins operation at maximum displacement (high torque, low speed) and shifts to minimum displacement (low torque, high speed) if torque requirement is low. The motor remains in maximum displacement until servo PC valve (10) receives a command from PCP valve (11) to direct system pressure and flow from shuttle valve (12) to minimum displacement side of servo cylinder (13) that shifts motor. As PCP valve opens in proportion to output voltage received from the node controller, pilot line pressure is directed to shift servo PC valve. After overcoming adjustable valve spring (14) and valve spring (15), servo PC valve shifts and directs fluid to stroke motor at minimum displacement output. If the load at the motor shaft increases, force on adjustable valve spring increases. This shifts servo PC valve to de-stroke the motor to maximum displacement for safe load handling.

The load drums and boom hoist motors also have a PCOR (Pressure Compensating Over-Ride) valve (16) that is enabled when system pressure of 4,930 psi (340 bar) is reached. When system pressure exceeds the PCOR setting, the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The PCOR valve overrides the command from servo PC valve, increasing motor displacement and output torque and reducing output speed.

When PCOR valve closes, control of the motor returns to servo PC valve.

The travel motor servo is opposite of other system motors. The travel variable displacement motors begin operation at minimum displacement (low torque, high speed). The motor shifts to maximum displacement (high torque, low speed) when starting torque is required and back to minimum displacement when in motion if load is below a preset pressure of 3770 psi (270 bar). Depending on motor system, servo uses internally or externally supplied pressure to perform the shifting operation. Servo control fluid is supplied from high-pressure line of motor port "A" or "B" and shifts shuttle valve and servo control valve before entering servo cylinder.

Continuous changing of closed-loop fluid occurs through leakage in pumps, motors, and loop flushing valves. Motor case fluid drainage lubricates the motor and provides a recirculation of hydraulic fluid to control heat in closed-loop system. Motors also have an internal or external loop flushing (purge) system that consists of control valve (17) and relief valve (18). If system pressure is above 200 psi (14 bar), loop flushing removes 4 gallons per minute (15 l/m) of hot fluid from system for added cooling and purification. If system pressure is under 200 psi (14 bar) loop flush is disabled.

Engine Controls

See engine manufacturer's manual for instructions.

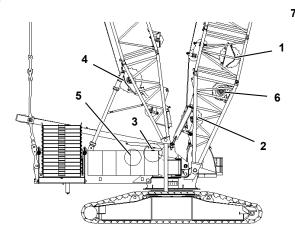
The engine is started and stopped with engine key switch.

Engine rpm is controlled with the hand throttle or foot throttle and is monitored with an AC magnetic sensor. Node-1 controller, engine node-0 controller, and engine control

module controls and process engine information and display the information on digital display.

Crane systems speed depends on engine speed and control handle movement in either direction from neutral. Engine clutch lever for pump drive must be manually engaged for normal operation.

The engine stop push button stops the engine in an emergency only as all brakes apply and any functions stop abruptly.


Three engine diagnostic lights are mounted on front console, see Engine Diagnostics in Section 10 of the Service/Maintenance Manual for diagnostic light information.

Drum Identification

See Figure 1-19 for the following procedure.

Seven wire rope drum drives are on the Model 18000 crane. The location and nomenclature is shown in Figure 1-19.

18CSM1-114

In Boom Insert

Item	Description
1	Main Hoist 1
2	Main Hoist 2
3	Whip Line Hoist
4	Boom Hoist
5	Mast Hoist
6	Luffing Jib Hoist
7	Rigging Winch

FIGURE 1-19

EPIC® CONTROL SYSTEM

CAN-Bus

See Figure 1-20 for the following procedure.

The Model 18000 crane's boom, load lines, swing, crawler tracks, and accessory components are controlled electronically with the EPIC (Electrical Processed Independent Control) with Can-Bus technology. The 24 volt can-bus system uses remote nodes that contain controllers. The controllers communicate with node-1 (master) controller by sending data packets over a two-wire bus line. The data packets are tagged with addresses that identify system components. Node-1 controller compares these input data packet signals with programming directives and data information. Node-1 controller then provides appropriate output commands to other remote nodes.

Each node controller receives and sends both analog and digital input/output voltages. Analog input/output voltages are either AC or DC variable voltages or currents that are in a pulse train. Digital input/output voltages are 24 volt nominal voltages that are either 0 = **off** or 1 = **on**.

Node controllers use the binary system. The binary system is based on binary multiples of two and only recognizes 0 = off or 1 = on. Basic counts of this system are exponents of the number two. These exponents are formed in words, called bytes, of eight numbers each. The eight numbers are 1, 2, 4, 8, 16, 32, 64, and 128 for an 8-bit controller or a combination of up to 255 bytes. These bytes represent electrical inputs/outputs to node-1 controller. See Crane Diagnostics in Section 10 of the Service/Maintenance Manual.

Universal nodes on the boom monitor the boom, luffing jib, or fixed jib components and input the information to node-1 controller. Boom components include angle sensors, block-up limits, and load pin sensors. The mast angle position is also monitored.

The system nodes controllers are listed below:

Node-0 - Engine

Node-1 - Master (Front Console)

Node-2 – Handles and Controls

Node-3 – Drum 3, Travel, and Pressure Senders

Node-4 - Accessory Components and Mast

Node-5 – Alarms, Limits, Boom, and Pump Controls

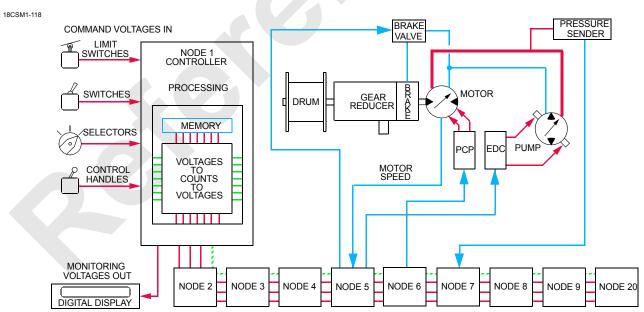
Node-6 – Drums 2, 4, 5, and Adapter Frame Pins

Node-7 – Swing and Auto Lube

Node-8 – Drum 1 and Drum 6

Node-9 – MAX-ER (Optional)

Boom Node-20 - Boom


Digital Display

See Figure 1-20 for the following procedure.

The digital display on front console shows operating conditions, operating limits, and system faults monitored by node controllers. Access information by scrolling to the desired screen with scroll switch. System messages are shown in Tables in Digital Display Readings in Section 10 of the Service/Maintenance Manual.

Rated Capacity Indicator/Limiter (RCL)

The RCL system is part of the EPIC can bus system. Load charts are specific for each crane model. For complete information see Rated Capacity Indicator/Limiter manual.

FIGURE 1-20

Crane Modes

Standard mode is for all normal load-handling operations.

In Setup mode, the program allows limited operation of whip line hoist, boom hoist, mast hoist, swing and travel.

In Setup Remote mode, program allows operation of items on hand-held radio remote control.

In Luffing Jib mode, the program allows standard mode load handling operations plus luffing jib operation.

In Tandem Drum mode, the program allows operation main hoist 1 and 2 in tandem and other normal load-handling operations.

In MAX-ER mode, the program allows operation of crane and MAX-ER attachment as one system.

Electrical Power to Operator's Cab

See Figure 1-21 for the following procedure.

When key-operated engine switch is in STOP position, voltage is available to operate dome light switch, and radio/clock. When key-operated engine switch is placed in RUN position, power is available to the following relays:

- Engine control module relay (CU ECM)
- Engine ether start relay (CU ES)
- Cab power relay (CAB PWR)

- CAN system ground relay (CAN GND)
- Air conditioning system relay (A/C CLUTCH)
- Engine starter solenoid relays (MS1/MS2)
- CAN system power relay (CAN PWR)

When cab power relay is enabled, power is available to operate crane controls (see Electrical Schematics in this manual).

Pressure Senders and Speed Sensors

Pressure senders monitor drum system pressures, right/left travel system pressure, swing right/left system pressure, swing brake pressure (cranes without swing lock), accessory system pressure, variable speed hydraulic cooler fan (tier 4 equipped), and high pressure accessory system pressure. Each node controller receives input hydraulic pressure information from each system pressure sender. Pressure senders provide information on the required load holding pressure for load drums, boom hoist drum, or luffing hoist drum.

Drum speed sensors in motor rotors detect speed and direction of drum movement. Node-1 controller receives this information as two out-of-phase square wave voltages that are converted to "counts". The controller compares control handle voltage with pump output to determine when to vary pump stroke.

System Faults

See Figure 1-21 for the following procedure.

Node-1 controller monitors and enables a red system fault light and buzzer if any system fault is detected. Crane fault/ limits screen displays the faults and automatically scrolls through faults, stopping for three seconds at each fault. When fault is corrected, the display clears the fault from the screen after scrolling through fault screen twice. When a system fault is enabled, one or more message is displayed. See Digital Display Readings in Section 10 of this manual.

Engine Faults (Tier 4)

See Section 7 for Tier 4 engine diagnostics and DPF related faults.

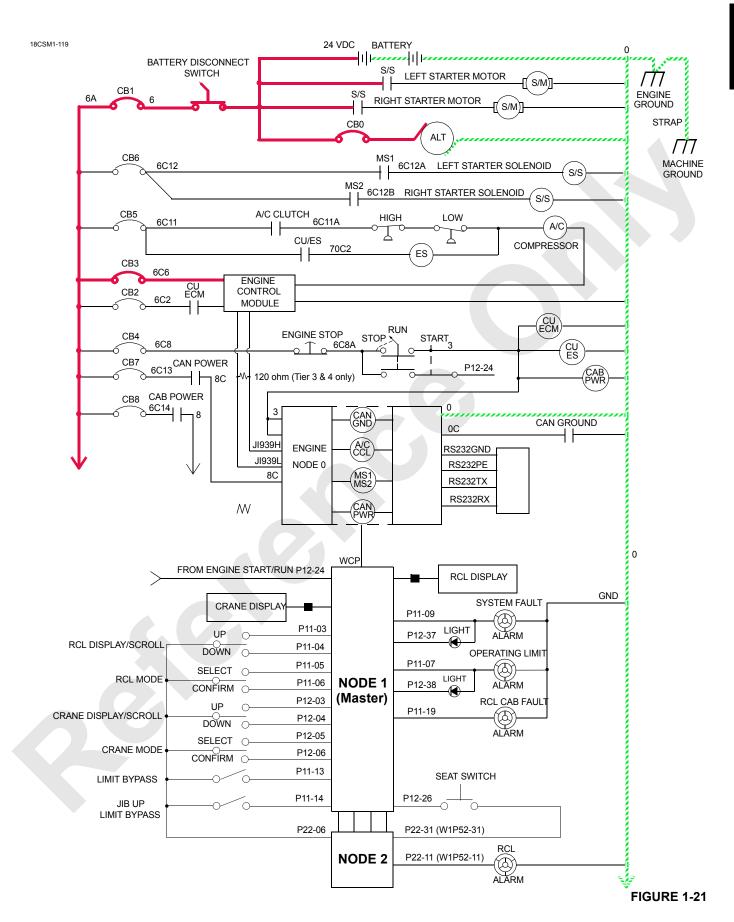
Operating Faults and Limit Switches

See Figure 1-21 for the following procedure.

When operating, all limit switches are closed, sending an input voltage to node-1 controller. If a limit switch is tripped, system node controller sends a zero output voltage to pump EDC and brake solenoid. System pump de-strokes and system brake solenoid valve shifts to apply brake. Move control in opposite direction of limit to correct the problem.

The limit bypass switch allows crane to be operated beyond the limits for crane setup or maintenance only. For example, to add wire rope on load drum or to remove wire rope from load drum after an operating limit is enabled. Node-1 controller monitors crane systems and enables a yellow operating limit light and alert if any limit switch is open or any programmed limit is reached. To identify and display operating limit, use scroll switch to access fault screen. When an operating limit is enabled, one or more messages are displayed. See Digital Display Readings in Section 10 of the Service/Maintenance Manual.

Brake and Drum Pawl Operation


All load drums, boom hoist, travel, and swing park brakes are spring-applied and hydraulically released. Boom hoist (Drum 4), mast hoist (Drum 5), and luffing jib (Drum 6) have drum pawls that are released with the selected park switch. When the operator places the selected brake switch in off - park position, the selected drum pawl is disengaged from drum. Place selected brake switch in on - park position to apply pawl to drum.

The swing node-controller releases swing brake and swing lock when swing brake switch is placed in off - park position.

Travel node-controller releases brake with control handle movement.

With a drum up or down control handle command, an input voltage is sent to node-1 controller. Node-1 controller does not release drum brake until pressure memory holding pressure is reached to hold the load, as determined by pressure sender.

SWING SYSTEM OPERATION

NOTE: All reference to swing lock is past production. Current production cranes do not have a swing lock

installed.

Swing System Components

See Figures <u>1-22</u> and <u>1-23</u> for the following procedure.

One hydraulic swing pump drives two swing motors (optional swing drive has two swing pumps and four swing motors). There are equalizing lines between legs A and legs B when two pumps drive two motors. Both swing systems are controlled with swing control handle movement and node controllers. Swing control handle is inoperable when swing brake is applied or the swing lock is engaged. Each motor driven swing gearbox drives a tooth gear that is meshed with lowerworks turntable bearing to swing the upperworks.

Swing motors are controlled directly by the output fluid volume of the swing pump. Node controllers do not control the fixed displacement swing motors. Swing pressure senders monitor the pressure on swing left and swing right sides of swing closed loop system. Swing brake pressure is monitored by a pressure sender through Node-7 on current production cranes without swing lock. While in MAX-ER mode, travel will be disabled if the swing brake is applied.

The upperworks is free to coast if swing control handle is in neutral position, swing brake is released, and swing lock is disengaged.

Swing speed and swing torque can be selected for type of work being performed by referring to "Speeds" screen in Crane Diagnostics in Section 10 of the Service/Maintenance Manual.

Continuous changing of closed-loop fluid occurs through leakage in pumps and motors.

When swing control handle is moved from off, node-5 controller sends a 24 volt signal to enable swing/travel alarm. When swing control handle is moved to off, node-5 controller sends a 0 volt signal to disable swing/travel alarm.

Swing Brake and Swing Lock

NOTE:

To verify if the crane does not have a swing lock installed, scroll to the swing brake diagnostic screen on the crane display. The swing brake pressure bank will be present only on cranes without a swing lock.

The swing system has a spring-applied hydraulically released brake on each drive shaft and a mechanical brake (swing lock) that places locking pins into slots in shaft locking flange of each gearbox.

The source hydraulic pressure for releasing the swing brakes and swing locks is from high pressure accessory

pump system through a pressure reducing shuttle valve at 500 psi (34 bar). For swing brake and swing lock operation the system pressure must be above 200-psi (14 bar) for full release brake and lock. If system pressure is below 200-psi (14 bar), swing brake or swing lock could be partially applied and damage the swing system. If brake pressure or electrical power is lost when operating, the swing brake is applied.

After startup, place swing brake switch in off - park position. An input voltage is sent to node-1 controller. Node-7 controller sends a 24 volt output to enable swing brake solenoid valve HS-32 and swing lock out solenoid valve HS-33.

Swing brake solenoid valve shifts to hydraulically release swing brake from each shaft. Swing lock out solenoid valve shifts to block tank port and supplies hydraulic system pressure to rod end of cylinders to hydraulically release mechanical locking pins from each shaft-locking flange. Fluid from piston end of cylinders flows to tank.

Before shutdown, place swing brake switch in on - park position. An input voltage is sent to node-1 controller. Node-7 controller sends a zero output voltage to disable swing brake solenoid valve HS-32 and enable swing lock in solenoid valve HS-34.

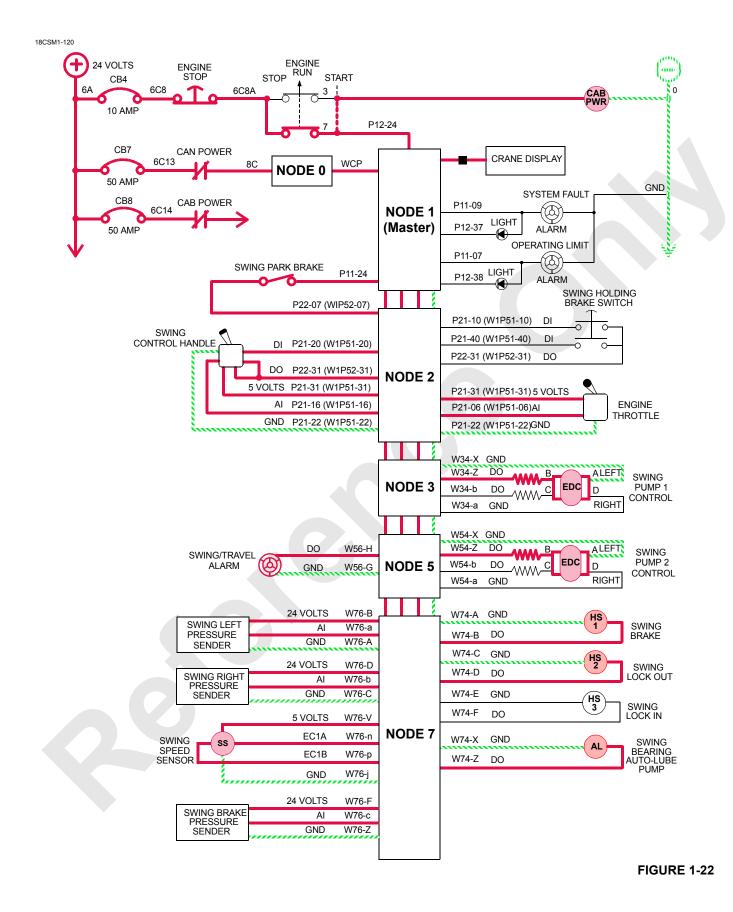
Swing brake solenoid valve shifts to block fluid to brake and swing brake is applied. Fluid from brake flows to tank. Swing lock in solenoid valve HS-34 shifts to block tank port and supplies hydraulic system pressure to piston end of cylinders to hydraulically engage mechanical locking pins into shaft locking flange. Fluid from rod end of cylinders flows to tank.

Swing Right or Left

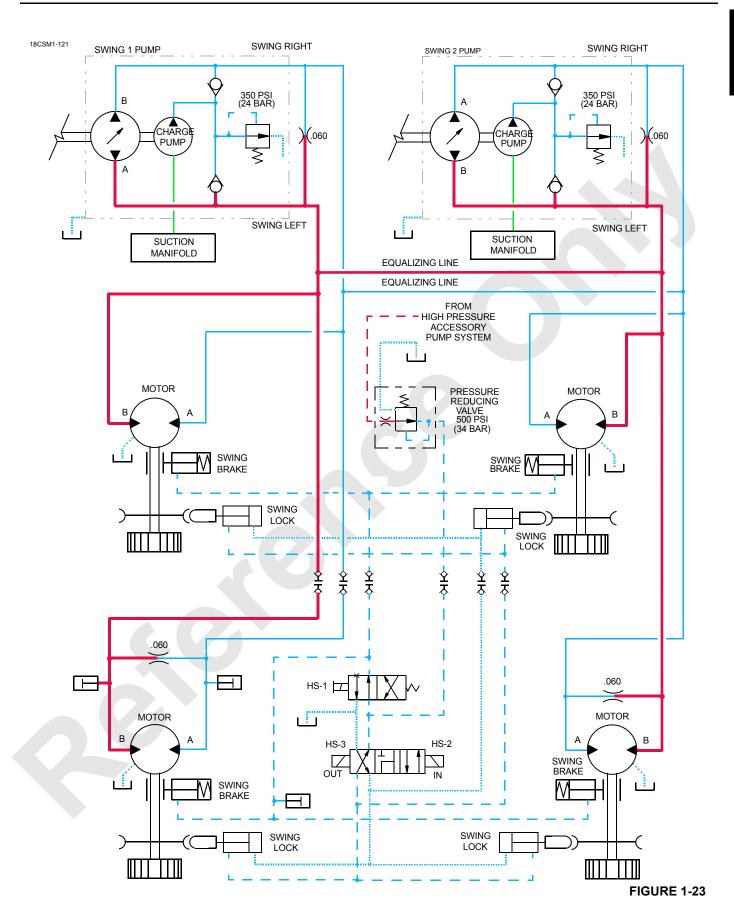
When swing control handle is moved to the *left*, an input voltage of 2.4 volts or less is sent to node-1 controller. Node-3 and node-5 controllers send a variable zero to 24 volt output that is divided by a resistor and applied to swing pump(s) EDC. Pump EDC tilts swashplate relative to control handle movement. Fluid flows from pump ports to motor ports (see <u>Figure 1-23</u>), rotating upperworks to the left. An orifice, across swing motor ports A and B allow smoother fluid flow when shifting swing directions.

When swing control handle is moved to *right*, an input voltage of 2.6 volts or more is sent to node-1 controller. Node-3 and node-5 controllers send a variable zero to 24 volt output that is divided by a resistor and applied to swing pump(s) EDC. Pump EDC tilts swashplate relative to control handle movement. Fluid flows from pump ports to motor ports (see Figure 1-22), rotating upperworks to the right.

As swing control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-3 and node-5 controllers send a zero output voltage to adjust swashplate to centered position.


When in a swinging motion, the preferred way to stop or slow crane is to move swing control handle beyond center in the opposite direction. This allows upperworks to gradually stop.

Swing Holding Brake Switch


Swing holding brake switch on side of swing control handle, holds upperworks in position (applies swing park brake) for short periods when operating. To prevent damage to swing system, swing holding brake switch must only be applied when crane is at a standstill.

When holding brake switch is pressed in and held, an input voltage is sent to node-1 controller. Node-7 controller sends a zero output voltage to shift swing brake solenoid HS-32. Swing brake solenoid valve shifts to block fluid to brake and swing brake is applied.

When swing holding brake switch is released, an input voltage is sent to node-1 controller. Node-7 controller sends a 24 volt output to shift swing brake solenoid HS-32. Swing brake solenoid valve shifts, allowing system pressure to hydraulically release park brake.

TRAVEL SYSTEM OPERATION

Travel System Components

See Figures 1-24 and 1-25 for the following procedure.

Each travel hydraulic pump drives two crawler system motors and gearboxes. Each hydraulic pump and motor is controlled with travel control handle movement and node controllers. Travel control handles are inoperable when travel park brake is applied. The gearbox for each crawler is driven with a flexible shaft connected between the motor output and drive gearbox input.

To ensure that crane travels in a straight line forward or reverse direction, each travel drive system has shuttle valves and pressure senders that monitor hydraulic pressure to each closed-loop system. When traveling, node-3 controller monitors information from pressure senders and adjusts displacement of travel pumps to maintain equal pressure in each travel drive system. This allows crane to track in a controlled straight direction.

The source hydraulic pressure for releasing the travel brakes and enabling motor servo systems is from high pressure accessory pump system through a pressure reducing valve at 500 psi (34 bar). Continuous changing of closed-loop fluid occurs through leakage in pump, motor, and loop flushing valves that removes 4 gallons per minute (15 L/min) of fluid to when system pressure is above 200-psi (14 bar).

The travel pumps output can be programmed for 25% to 100% of rated volume. See "Speeds" screen in Crane Diagnostics in Section 10 of the Service/Maintenance Manual.

When either travel control handle is moved from off, an input signal is sent to node-1 controller. Node-5 controller sends a 24 volt signal to enable the swing/travel alarm. When travel control handle is moved to off, node-5 controller sends a 0 volt signal to disable the swing/travel alarm.

Travel Brakes

Hydraulic pressure required for releasing the travel brakes is from high pressure accessory pump system through a pressure reducing valve at 500 psi (34 bar). For travel brake operation the system pressure must be above 200 psi (14 bar) for travel brakes to fully release from each travel motor shaft. If system pressure is below 200-psi (14 bar), travel brake could be partially applied and damage the brake. If brake pressure or electrical power is lost when operating, the travel brake is applied.

When travel brake switch is in on - park position, right and left travel brakes are applied to hold crane in position. Travel brake solenoid valve HS-35 is open to allow hydraulic flow from the brake to tank.

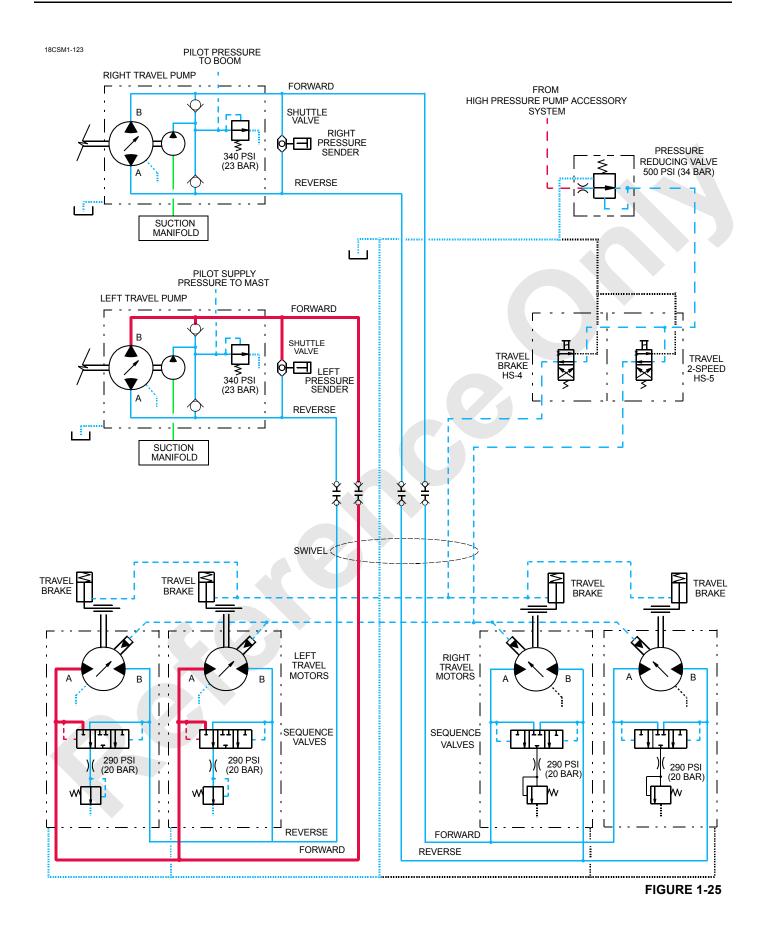
When travel brake switch is in off - park position, an input signal is sent to node-1 controller. Travel system circuit is active, waiting for a travel control handle command. When travel control handle is moved node-7 controller sends a 24 volt output to enable travel brake solenoid valve HS-35. Brake solenoid valve shifts to block tank port and supplies hydraulic charge pressure fluid from pump to hydraulically release all four crawler brakes. If brake pressure or electrical power is lost when operating, brakes apply.

Travel Forward and Reverse

Both travel closed-loop systems operate the same, except fluid flow to motor ports is different to each track.

When a travel control handle is moved in *forward* direction, an input voltage of 2.6 or more volts is sent to node-1 controller. Node-3 and/or node-5 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to selected travel pump EDC. Travel brake solenoid valve HS-35 is enabled to release both left and right crawler brakes, before selected travel pump(s) strokes.

Travel pump EDC tilts pump swashplate in the *forward* direction. Hydraulic fluid flow is from pump ports of selected travel pump through swivel to selected motor ports. Node-3 and/or node-5 controller input voltage to selected travel pump EDC is relative to selected control handle movement.


When a travel control handle is moved in *reverse* direction, an input voltage of 2.4 volts or less is sent to node-1 controller. Node-3 and/or node-5 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to selected travel pump EDC. Node-7 controller sends a 24 volt output to enable travel brake solenoid valve HS-35. Travel brake solenoid valve is enabled to release both left and right crawler brakes, before selected travel pump strokes.

The travel pump EDC tilts the motor swashplate in the reverse direction. Hydraulic fluid flow is from pump ports of selected travel pump through swivel to selected motor ports. Node-3 and/or node-5 controller input voltage to selected travel pump EDC is relative to selected control handle movement.

Travel motors are variable displacement and shift internally with an adjustable spring in each motor P/C (Pressure/Compensator) valve, preset at 3,915 psi (270 bar). Travel motors are in minimum displacement (low torque, high-speed) position when starting. When crawler begins to move, a high system pressure shifts the PCOR (Pressure Compensated Over-Ride) spool placing travel motor in maximum displacement (high torque, low speed) position for breakaway torque.

18CSM1-122 **ENGINE** 24 VOLTS **ENGINE** ann RUN STOP STOP START CB4 6C8A 10 AMP P12-24 CB7 **CAN POWER** 6C13 CRANE DISPLAY 8C WCP NODE 0 GND 50 AMP SYSTEM FAULT 6C14 CAB POWER P11-09 CB8 LIGHT NODE 1 ALARM P12-37 50 AMP (Master) **OPERATING LIMIT** P11-07 LIGHT DI TRAVEL P11-23 P12-38 ALARM SPEED DI P12-25 P11-25 **TRAVEL** 0 TRAV/FI PARK BRAKE CRUISE DO P22-08 (W1P52-08) P22-36 (W1P52-36) **SWITCH** LEFT TRAVEL CONTROL HANDLE P22-27 (W1P52-27) DO DI P21-17 (W1P51-17) P21-31 (W1P51-31) 5 VOLTS DO P22-26 (W1P52-26) **ENGINE** P21-06 (W1P51-06)AI 5 VOLTS P22-39 (W1P52-39) THROTTLE P21-22 (W1P51-22)GND ΑI P21-13 (W1P51-13) GND P21-22 (W1P51-22) NODE 2 RIGHT TRAVEL CONTROL HANDLE P22-29 (W1P52-29) P21-18 (W1P51-18) DI P22-28 (W1P52-28) P22-40 (W1P52-40) 5 VOLTS Al P21-14 (W1P51-14) GND P21-22 (W1P51-22) 24 VOLTS W33-R LEFT TRACK PRESSURE ΑI W33-f W34-T GND ₩^B W33-g SENDER GND W34-U DO A FWD LEFT TRACK √WW\<u>c</u> **EDC** PUMP NODE 3 W34-W DO 24 VOLTS W33-P CONTROL **REV** RIGHT TRACK W34-V GND ΑI W33-e GND W33-N SENDER W54-A **GND** _A FWD DO W56-H W54-B DO √WW<u>B</u> RIGHT TRACK SWING/TRAVEL DO_\WW\-EDC **PUMP** W54-D NODE 5 ALARM W56-G GND CONTROL GND REV W54-C W74-G GND 5 W74-H DO 2-SPEED W74-T GND TRAVEL BRAKE NODE 7 W74-U DO W74-V GND TRAVEL AUTO-LUBE W74-W DO FIGURE 1-24

As travel control handle nears neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-3 and/or node-5 controller sends a zero output voltage to pump EDC to move swashplate to center position. After travel control handle command is off for a preset time, a zero output voltage is sent to disable travel brake solenoid valve HS-4. Travel brake solenoid valve shifts to block pilot pressure to brakes and opens a line to tank. Brakes apply.

Two-Speed Travel Operation

Travel speed switch allows operator to select *low* speed when smoother starts and precise control over the load is required. Low speed places travel motor in maximum displacement (high torque, low speed) position and prevents motor from shifting to high speed.

Place travel speed switch in *high* speed when maximum available travel speed is required (normal operation). Hydraulic pressure required for releasing travel 2-speed solenoid valve is from high pressure accessory pump system through a pressure reducing valve at 500 psi (34 bar).

When travel speed switch is in *low* speed position, node-7 controller sends a 24 volt output to enable 2-speed travel solenoid valve HS-5, shifting valve and directing hydraulic pilot pressure to P/C (Pressure/ Compensated) valve. The P/C valve shifts PCOR (Pressure Compensated Over-Ride) spool placing travel motor in maximum displacement (high

torque, low speed) position. Travel motors remain in this position until travel speed switch is placed in *high* speed position and engine speed is more than 1500 RPM.

When travel speed switch is in *high* speed position, travel motors shift to minimum displacement (low torque, high speed) automatically if engine speed is above 1500 rpm and system pressure is below 3,915 psi (270 bar). If engine is below 1500 rpm, 2-speed travel solenoid valve HS-5 is enabled although travel speed switch is in the *high* position. Travel two-speed solenoid valve HS-5 is disabled, shifting valve and removing hydraulic pilot pressure to P/C valve, allowing motor to operate in PCOR mode.

Travel Cruise

Travel cruise switch on right console locks-in any travel command. This allows crawler track to operate in either direction at a selected speed without manually moving travel handles. When moving at desired speed and direction, move travel switch to *cruise* position. The travel pump flow requirements and direction is locked-in. When a travel handle is moved to neutral position, the travel speed and direction is maintained.

Moving the travel switch to **off** position or moving either travel handle in opposite direction from neutral, opens travel cruise circuit and returns control of travel system to the operator.

BOOM HOIST SYSTEM OPERATION

Boom Hoist System Components

See Figures 1-26 and 1-27 for the following procedure.

Two separate hydraulic pumps and motors drive a gearbox on each end of boom hoist drum (Drum 4). The boom hoist drum is controlled with the boom hoist control handle movement and node controllers. Boom hoist control handle is inoperable when boom hoist park brake is applied. Each boom hoist drum motor drives a shaft that is connected to a gearbox.

In Standard mode boom hoist (Drum 4) is controlled with control handle on left side console. In Luffing Jib mode boom hoist is controlled with control handle on far right of right side console, while the luffing jib hoist (Drum 6) is controlled by control handle on left side console.

Hydraulic charge pressure from left travel charge pump supplies hydraulic pilot pressure to operate both boom hoist motor servos. Hydraulic charge pressure from system charge pumps supplies hydraulic make-up fluid to low-pressure side of each boom hoist motor. A pressure sender in one high-pressure side of boom hoist system provides system pressure information to node-1 controller. There are equalizing lines between legs A and legs B when two pumps drive two motors. A fixed orifice between pump ports A and B allows for smoother drum operation.

When boom hoist motor rotates, a speed sensor mounted at one motor monitors rotor movement and sends an input voltage to node-1 controller. Node-2 controller sends a 24 volt output to rotation indicator in control handle. As boom hoist drum rotates faster, the rotation indicator on top of control handle pulsates with a varying frequency that indicates drum rotational speed.

Continuous changing of closed-loop fluid occurs through leakage in pump, motor, and external sequence/flow valve. Sequence/flow valve opens at 200 psi (14 bar) and removes 4 gallons per minute (15 l/m) of hot fluid from system by dumping the fluid into the motor case where fluid returns to tank.

Boom Hoist Brake and Pawl

Hydraulic pressure to operate boom hoist brake is from low-pressure side of boom hoist system. A electrical motor operates the boom hoist drum pawl.

When boom hoist brake switch is in on - park position, boom hoist brake solenoid valve HS-6 is disabled to apply brake to drum. Boom hoist electric drum pawl in relay K1 is enabled to keep pawl applied to boom hoist drum. Boom hoist pump does not stroke in response to boom hoist control handle movement.

When boom hoist brake switch is placed in off - park position, boom hoist brake remains applied to boom hoist drum until

node-6 controller sends a 24 volt output to brake solenoid valve HS-6 to release brake. Node-6 controller sends 24 volt output to enable boom hoist pawl electric motor K2 relay in the pawl out direction. Boom system circuit is active, waiting for a control handle command.

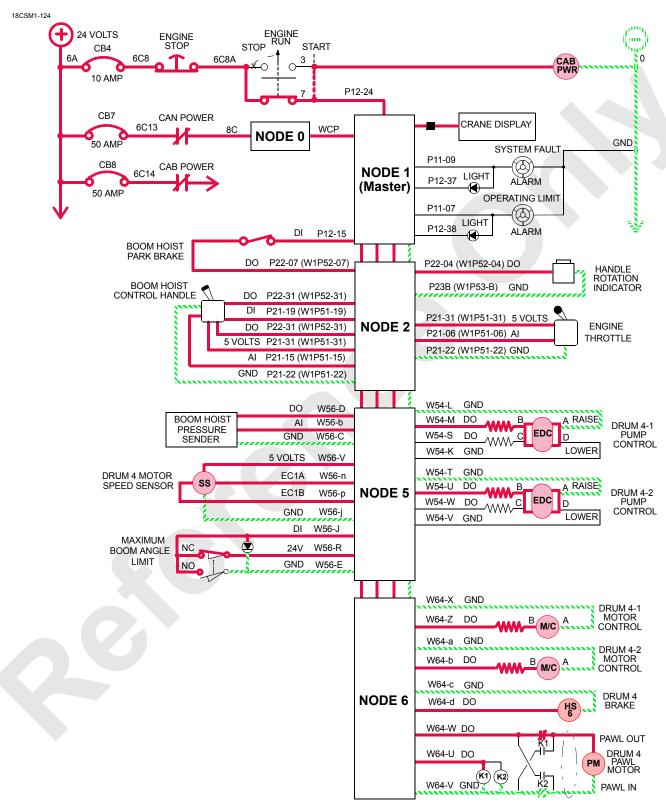
Boom Hoist Raise

When boom hoist control handle is moved back for booming \boldsymbol{up} , an input voltage of 2.4 volts or less is sent to node-1 controller. Node-5 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to each boom pump EDC. Node-6 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to each boom hoist motor PCP. Node-1 controller checks that boom up limit switch is closed and no hydraulic system fault is present.

Each pump EDC tilts swashplate in the *up* direction to satisfy pressure memory. Node-1 controller compares boom hoist-holding pressure to value in pressure memory. When system pressure is high enough, node-6 controller sends a 24 volt output to boom hoist brake solenoid valve HS-6. The brake solenoid shifts to block drain port and opens port to low-pressure side of boom hoist system to release boom hoist drum brake.

Each pump EDC continues to tilt swashplate in the up direction as hydraulic fluid flow is from pump ports to motor ports. Return fluid is from motor outlet ports to pump inlet ports.

Node-5 controller output voltage to each pump EDC and node-6 controller output voltage to each motor PCP is relative to control handle movement. As boom hoist control handle is moved back, pump swashplate angle is increased. When system pressure exceeds the PCOR (Pressure Compensating Over-Ride) valve setting of 4,930 psi (340 bar), the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The PCOR valve over-rides the command from servo PC valve, increasing motor displacement and output torque and reducing output speed. When PCOR valve closes, control of the motor returns to servo PC valve.


Node controllers are continuously balancing the system pressure and the motor displacement angle so the motor displacement goes to minimum when control handle is fully back, if the motor torque requirement is not too high. Node-6 controller monitors motor displacement and controls motor speed by regulating the hydraulic fluid flow through the pumps.

When boom hoist control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-5 controller sends a zero output voltage to each boom hoist pump EDC that moves swashplate to center position. This shifts the motor back to maximum displacement for slower output speed to slow the drum rotation. The controller stores

the load holding pressure in pressure memory. After control handle center switch opens, node-6 controller sends a zero output voltage to disable boom hoist brake solenoid valve

HS-6. Drum brake solenoid valve shifts to block pilot pressure to brakes and opens a line to tank. Brakes apply before drum pump de-strokes.

FIGURE 1-26

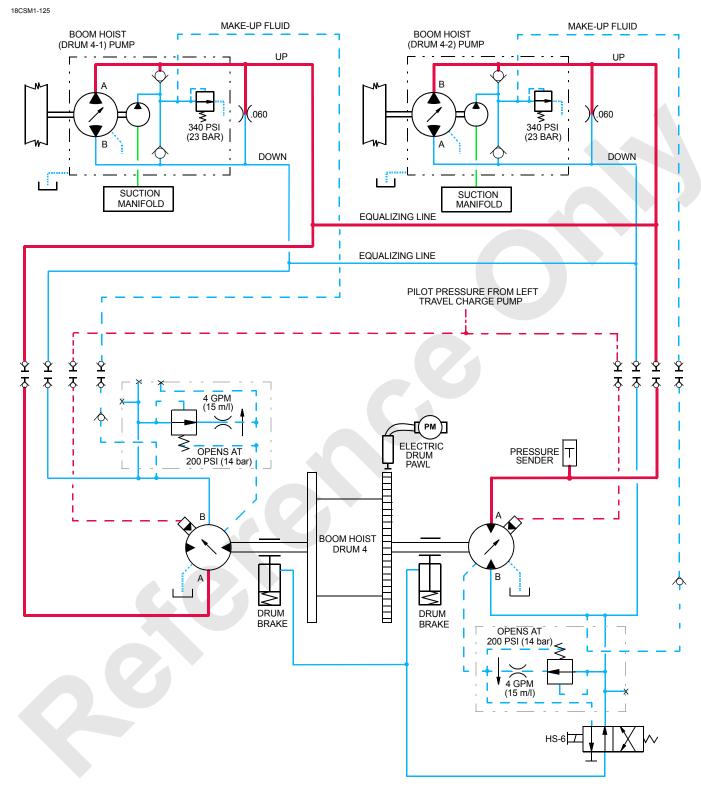


FIGURE 1-27

Boom Hoist Lower

When boom hoist control handle is moved forward for booming *down*, an input voltage of 2.6 volts or more is sent to node-1 controller. Node-5 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to each boom pump EDC. Node-6 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to each boom motor PCP. Node-1 controller checks that boom up limit switch is closed and no hydraulic system fault is present.

Each pump EDC tilts swashplate in the *up* direction to satisfy pressure memory. Node-1 controller compares boom hoist-holding pressure to value in pressure memory. When system pressure is high enough, node-6 controller sends a 24 volt output to boom hoist brake solenoid valve HS-6. The brake solenoid shifts to block drain port and opens port to low-pressure side of boom hoist system to release boom hoist drum brake.

When brake is released, each pump EDC continues to tilt swashplate to stroke pumps in the down direction. In the down direction, hydraulic fluid flow is from pump ports to motor ports. Return fluid is from motor outlet ports to pump inlet ports.

Node-5 controller output voltage to each pump EDC and node-6 controller output voltage to each motor PCP is relative to control handle movement. As boom hoist control handle is pushed forward, pump swashplate angle is increased. When system pressure exceeds the PCOR (Pressure Compensating Over-Ride) valve setting of 4,930 psi (340 bar), the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The

PCOR valve over-rides the command from servo PC valve, increasing motor displacement and output torque and reducing output speed. When PCOR valve closes, control of the motor returns to servo PC valve.

Node controllers are continuously balancing the system pressure and the motor displacement angle so the motor displacement goes to minimum when control handle is fully forward, if the motor torque requirement is not too high. Node-1 controller monitors motor displacement and controls motor speed by regulating the hydraulic fluid flow through the pump.

The weight of boom attempts to drive motor faster than return fluid can return to low-pressure side of pump. System charge pump maintains fluid supply at a positive pressure to motor. Pump swashplate position restricts the returning fluid flow. Pressure builds on fluid return side of closed-loop, acting as a hydraulic brake to control lowering speed.

When boom hoist control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-5 controller sends a zero output voltage to each boom hoist pump EDC that moves swashplate to center position. This shifts the motors back to maximum displacement for slower output speed to slow the drum rotation. Node-1 controller stores the load holding pressure in pressure memory. After control handle center switch opens, Node-6 controller sends a zero output to disable boom hoist brake solenoid valve HS-6. Drum brake solenoid valve shifts to block pilot pressure to brakes and opens a line to tank. Brakes apply before drum pump de-strokes.

MAIN HOIST 1 SYSTEM

Main Hoist 1 System Components

See Figures 1-28 and 1-29 for the following procedure.

Main hoist 1 drum is located in first boom insert. Two main hoist 1 pumps drive two drum motors on each end of load drum that is connected to a gearbox. Hydraulic connections between main hoist 1 pumps and motors form a closed-loop system that is controlled with control handle movement and node controllers. The left load drum control handle on the right side console operates the main hoist 1 in Standard, Luffing, or Tandem Drum mode. Main hoist 1 control handle is inoperable when drum 1 park brake is applied.

Main hoist pump 1/3 is dedicated to operate whip line hoist (Drum 3) motor. See Whip Line Hoist System in this manual for whip line hoist information.

Hydraulic charge pressure from left travel charge pump supplies hydraulic pilot pressure to operate both main hoist 1 motor servos. Hydraulic charge pressure from system charge pumps supplies hydraulic make-up fluid to low-pressure side of each main hoist 1 motor. A pressure sender in high-pressure side of one pump leg provides system pressure information to node-1 controller. There are equalizing lines between legs A and legs B when two pumps drive two motors. A fixed orifice between pump ports A and B allows for smoother drum operation.

When drum motors rotate, a speed sensor at one motor rotor monitors and sends an input voltage to node-1 controller. Node-2 controller sends an output voltage to rotation indicator in control handle. As drum rotates faster, the rotation indicator on top of control handle pulsates with a varying frequency that indicates drum rotational speed. The handle command in percent from neutral is displayed on Drum 1 screen in operator's cab.

Continuous changing of closed-loop fluid occurs with leakage in pump, motor, and external sequence/flow valve. Sequence/flow valve opens at 200 psi (14 bar) and removes 4 gallons per minute (15 l/m) of hot fluid from system by discharging exhausted fluid into motor case where the fluid returns to tank.

Main Hoist 1 Drum Brake

Hydraulic pressure to operate main hoist 1 drum brakes is from low-pressure side of drum1/3.

When selected main hoist drum brake switch is in on - park position, drum brake solenoid valve HS-7 is disabled so brakes are applied to each side of drum shaft. Drum pump does not stroke in response to control handle movement.

When selected main hoist drum brake switch is placed in offpark position, brake solenoid valve HS-7 remains applied. Brakes remain applied until node-8 controller sends a 24 volt output to release the brake. The drum circuit is active, waiting for a control handle command.

Main Hoist 1 Raising

The following drum raising operation is for main hoist 1 (Drum 1) while operating in Standard mode.

When main hoist 1 control handle is moved back for *raising*, an input voltage of 2.4 volts or less is sent to node-1 controller. Node-3 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to each pump EDC in the hoist direction. Node-8 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to both motor PCP's. Node-1 controller checks that drum block-up limit switches are closed and no system faults are present.

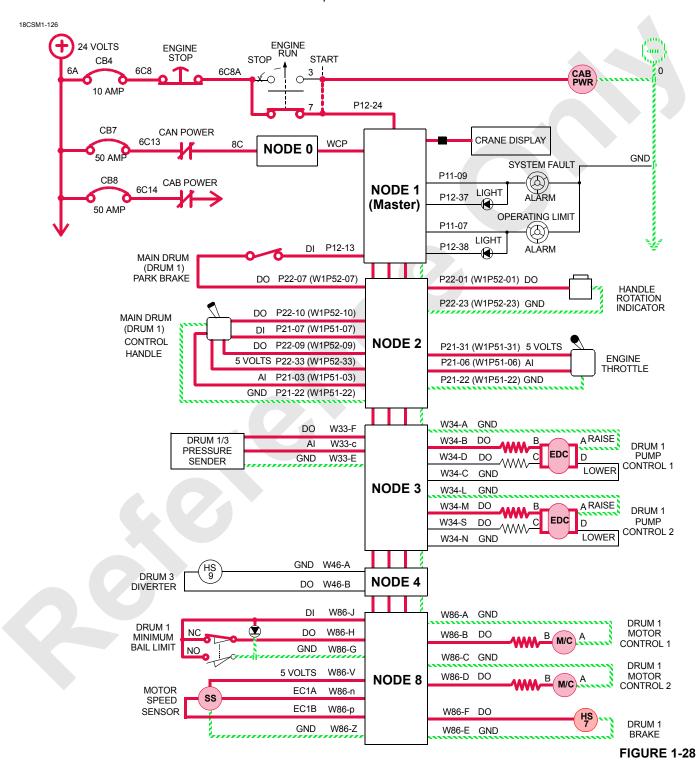
Pump EDC's tilt swashplate in the *up* direction to satisfy pressure memory. Node-1 controller compares drum holding pressure to value in pressure memory. When system pressure is high enough, node-8 controller sends a 24 volt output to enable drum brake solenoid valve HS-7. Drum brake solenoid shifts to block drain port and opens port to low-pressure side of drum system to release brakes from both sides of drum shaft.

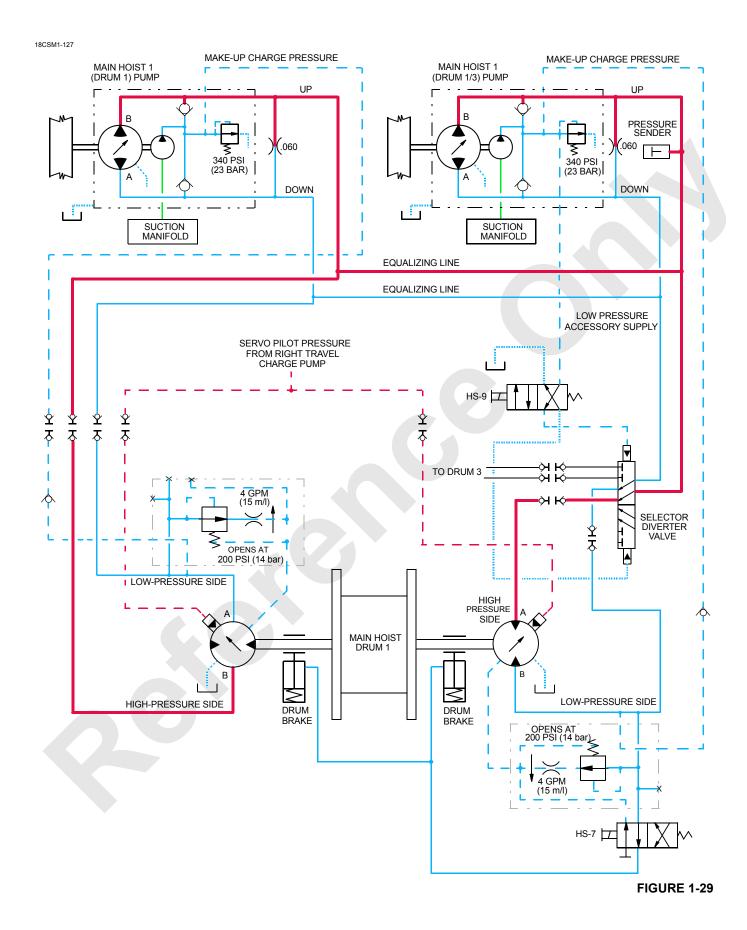
Each pump EDC tilts swashplate in the up direction as hydraulic fluid flow is from port B of both pumps to port A of left side motor and port B of right side motor. Return fluid is from motor ports A and B to return ports A of each pump.

Node controller output voltages to each pump EDC and each motor PCP is relative to control handle movement. The system pumps operate a slave and master with one pump operating continuously and the other pump varying to keep drum at handle command setting. As control handle is moved back, an output voltage increases the pumps swashplate angles. When system pressure exceeds the PCOR (Pressure Compensating Over-Ride) valve setting of 4,930 psi (340 bar), the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The PCOR valve over-rides the command from servo PC valve, increasing motor displacement and output torque and reducing output speed. When PCOR valve closes, control of the motor returns to servo PC valve.

Node controllers continuously balance drum system pressures and monitor motor displacement angle so motor displacement goes to minimum when control handle is all the way back, if motor torque requirements is not too high. Node-1 controller monitors motor displacement and controls motor speed by regulating the hydraulic fluid flow through the pump.

When drum control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-3 controller sends a zero output voltage to each pump EDC that moves swashplate to center position. This shifts the motor back to maximum




displacement for slower output speed to slow the drum rotation. Node-1 controller stores the load holding pressure in pressure memory.

After control handle center switch opens, node-6 controller sends a zero output voltage to disable drum brake solenoid valve HS-7. Drum brake solenoid valve shifts to block pilot

pressure to brakes and opens a line to tank. Brakes apply before drum pump de-strokes.

The diverting valve lines to main hoist 1/3 drum motor remain open until whip line hoist control handle is selected for operating whip line hoist in any mode.

Main Hoist 1 Lowering

The following drum lowering operation is for main hoist 1 while operating in Standard mode.

When main hoist 1 control handle is moved forward for lowering load, an input voltage of 2.6 volts or more is sent to node-1 controller. Node-3 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to each pump EDC in the hoist direction. Node-8 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to each motor PCP. The controller checks that drum block-up limit switches are closed and no system faults are present.

Each pump EDC tilts swashplate in the up direction to satisfy pressure memory. Node-1 controller compares holding pressure to value in pressure memory. When system pressure is high enough, node-8 controller sends a 24 volt output to enable drum brake solenoid valve HS-7. The brake solenoid shifts to block drain port and opens port to low-pressure side of drum system to release drum brake.

When brake is released, node controllers output voltage to each pump EDC and to each motor PCP tilts pump swashplate to stroke pump in the lowering direction. Hydraulic fluid flow is from port A of each pump to port B of left side motor and port A of right side motor. Return fluid is from motor ports A and B to return ports B of each pump.

Controller output voltage to each pump EDC and each motor PCP is relative to control handle movement. As drum control handle is pushed forward, an output voltage increases the pump swashplate angle. When system pressure exceeds the PCOR valve setting of 4,930 psi (340 bar), the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The PCOR valve over-

rides the command from servo PC valve, increasing motor displacement and output torque and reducing output speed. When PCOR valve closes, control of the motor returns to servo PC valve.

Node controllers are continuously balancing the system pressure and the motor displacement angle so the motor displacement goes to minimum when control handle is all the way forward, if the motor torque requirement is not too high. Node-1 controller monitors motor displacement and controls motor speed by regulating the hydraulic fluid flow through the pump.

The load weight attempts to drive motor faster than return fluid can return to low-pressure side of pump. System charge pump maintains fluid supply at a positive pressure to motor. Pump swashplate position restricts motor over speed. Pressure builds on fluid return side of closed-loop, acting as a hydraulic brake to control lowering speed.

When drum control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-3 controller sends a zero output voltage to each pump EDC that moves swashplate to center position. This shifts the motor back to maximum displacement for slower output speed to slow the drum rotation. Node-1 controller stores the load holding pressure in pressure memory. After control handle center switch opens, node-8 controller sends a zero output voltage is sent to disable drum brake solenoid valve HS-7 and to apply brake before pump de-strokes.

The diverting valve lines to main hoist 1/3 drum motor remain open until whip line hoist control handle is selected for operating whip line hoist in any mode.

WHIP LINE HOIST (DRUM 3) SYSTEM Whip Line Hoist System Components

See Figures <u>1-30</u> and <u>1-31</u> for the following procedure.

The whip line hoist (Drum 3) is located on the rotating bed. Main hoist 1 and whip line hoist is a dedicated system where only one function can be operated at a time. In Standard mode main hoist 1/3 pump drives the whip line motor through a diverting valve that is controlled with control handle movement and node controllers. The motor drives a drum shaft that is connected to a gearbox.

The far right drum control handle on the right side console operates the whip line hoist in Standard and Tandem Drum mode. The first drum control handle on the right side console operates the whip line hoist in Setup and Luffing Jib mode. The whip line hoist control handle is inoperable when whip line hoist park brake is applied.

Hydraulic pilot pressure to operate motor servo is from left travel charge pump. A pressure sender in high-pressure side of system provides system pressure information to node-1 controller. A fixed orifice between pump ports A and B allows for smoother drum operation.

When whip line hoist drum motor rotates, a speed sensor at motor rotor monitors and sends an input voltage to node-1 controller. Node-2 controller sends an output voltage to rotation indicator in control handle. As load drum rotates faster, the rotation indicator on top of control handle pulsates with a varying frequency that indicates drum rotational speed.

Continuous changing of fluid occurs through leakage in pump, motor, and external sequence/flow valve. Sequence/flow valve opens at 200 psi (14 bar) and removes 4 gallons per minute (15 l/m) of hot fluid from system by dumping the fluid into the motor case where fluid returns to tank.

Whip Line Drum Brake

Hydraulic pressure to operate whip line drum brake is from low-pressure side of system.

When whip line hoist brake switch is in on - park position, brake solenoid valve HS-8 is disabled so brake is applied to drum. Drum pump does not stroke in response to control handle movement.

When whip line hoist brake switch is placed in off - park position, brake solenoid valve HS-8 remains disabled. Brake remains applied until node-3 controller sends a 24 volt output to release the brake. Whip line hoist circuit is active, waiting for a control handle command.

Whip Line Hoist Raising

The following drum raising operation is for whip line hoist while operating in Standard mode.

When whip line hoist control handle is moved back for *raising*, an input voltage of 2.6 volts or more is sent to node-1 controller. Node-4 controller sends a 24 volt output to drum 3 diverting solenoid valve HS-9 to shift valve and open lines to drum 3 motor and close lines to main hoist 1 left side drum motor. Node-3 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to main hoist 1/3 pump EDC in the hoist direction. Node-3 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to whip line motor PCP. Node-1 controller checks that drum block-up limit switches are closed and no system faults are present.

Main hoist 1/3 pump EDC tilts swashplate in the *up* direction to satisfy pressure memory. Node-1 controller compares drum holding pressure to value in pressure memory. When system pressure is high enough, node-3 controller sends a 24 volt output to enable drum brake solenoid valve HS-8. The drum brake solenoid shifts to block drain port and opens port to low-pressure side of drum system to release brake.

The pump EDC continues to tilt swashplate in the up direction as hydraulic fluid flow is from port B of pump to port A of motor. Return fluid is from port B of motor to return port A of pump.

Node controller output voltage to pump EDC and motor PCP is relative to control handle movement. The system pump varies flow to keep drum at handle command setting. As control handle is moved back, an output voltage increases the pump swashplate angle. When system pressure exceeds the PCOR (Pressure Compensating Over-Ride) valve setting of 4,930 psi (340 bar), the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The PCOR valve over-rides the command from servo PC valve, increasing motor displacement and output torque and reducing output speed. When PCOR valve closes, control of the motor returns to servo PC valve.

Node controllers are continuously balancing the system pressures and the motor displacement angle so the motor displacement goes to minimum when control handle is all the way back, if the motor torque requirement is not too high. Node-1 controller monitors motor displacement and controls motor speed by regulating the hydraulic fluid flow through the pump.

18CSM1-128

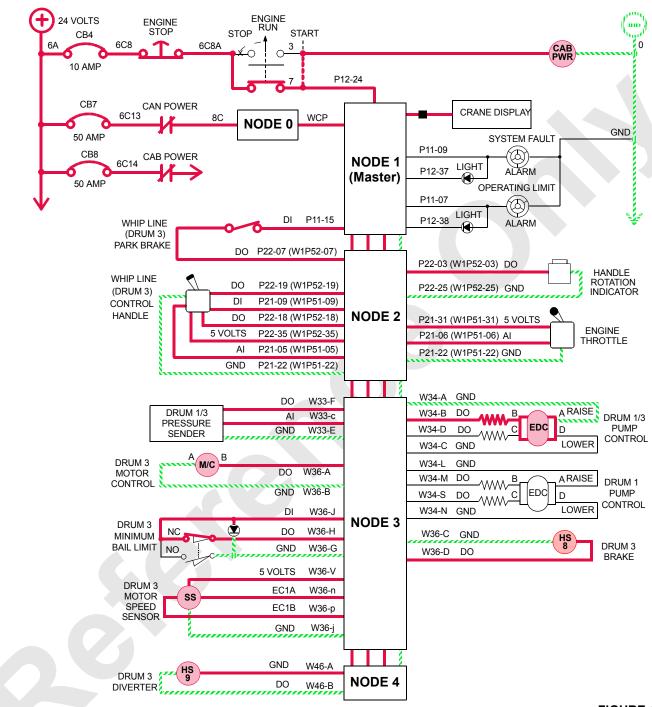
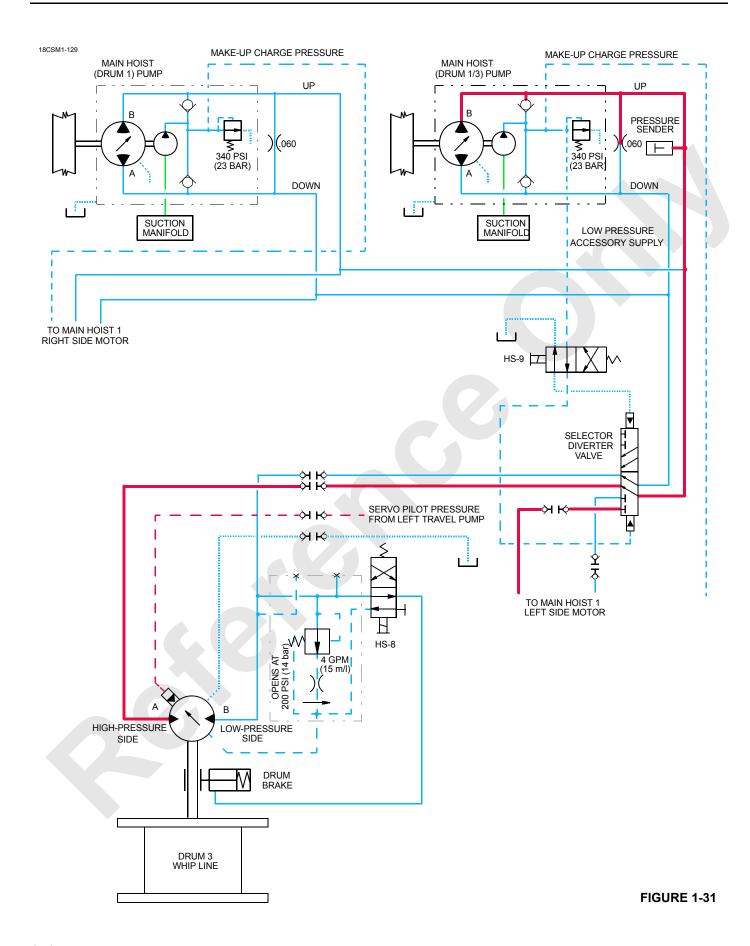



FIGURE 1-30

When drum control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-3 controller sends a zero output voltage to pump EDC that moves swashplate to center position. This shifts the motor back to maximum displacement for slower output speed to slow the drum rotation. Node-1 controller stores the load holding pressure in pressure memory. After control handle center switch opens, node-3 controller sends a zero output voltage to disable drum brake solenoid valve HS-8 to apply brake before load drum pump de-strokes.

The diverting valve lines to whip line hoist motor remain open until main hoist 1 control handle is selected for operating main hoist 1.

Whip Line Hoist Lowering

The following load drum lowering operation is for whip line hoist while operating in Standard mode.

When whip line hoist control handle is moved forward for *lowering* load, an input voltage of 2.4 volts or lower is sent to node-1 controller. Node-4 controller sends a 24 volt output to drum 3 diverting solenoid valve HS-9 to shift valve and open lines to drum 3 motor and close lines to main hoist 1 left side drum motor. Node-3 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to main hoist pump 1/3 EDC in the hoist direction. Node-3 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to whip line motor PCP. Node-1 controller checks that drum block-up limit switches are closed and no hydraulic system faults are present.

Main hoist 1/3 pump EDC tilts swashplate in the *up* direction to satisfy pressure memory. Node-1 controller compares drum holding pressure to value in pressure memory. When system pressure is high enough, node-3 controller sends a 24 volt output to enable drum brake solenoid valve HS-8. The drum brake solenoid shifts to block drain port and opens port to low-pressure side of drum system to release brake.

When brake is released, node-3 controller sends a 24 volt output voltage to pump EDC to tilt swashplate to stroke pump in the lower direction. In the lower direction, hydraulic

fluid flow is from port B of pump to port A of motor. Return fluid is from port B of motor to port A of pump.

Controller output voltage to pump EDC and motor PCP is relative to control handle movement. As drum control handle is pushed forward, an output voltage increases the pump swashplate angle. When system pressure exceeds the PCOR valve setting of 4,930 psi (340 bar), the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The PCOR valve over-rides the command from servo PC valve, increasing motor displacement and output torque and reducing output speed. When PCOR valve closes, control of the motor returns to servo PC valve.

Node controllers are continuously balancing the system pressure and the motor displacement angle so the motor displacement goes to minimum when control handle is all the way forward, if the motor torque requirement is not too high. Node-3 controller monitors motor displacement and controls motor speed by regulating the hydraulic fluid flow through the pump.

The load weight attempts to drive motor faster than return fluid can return to low-pressure side of pump. System pump maintains fluid supply at a positive pressure to motor. Pump swashplate position restricts motor over speed. Pressure builds on fluid return side of closed-loop, acting as a hydraulic brake to control lowering speed.

When drum control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-3 controller sends a zero output voltage to pump EDC that moves swashplate to center position. This shifts the motor back to maximum displacement for slower output speed to slow the drum rotation. Node-1 controller stores the load holding pressure in pressure memory. After control handle center switch opens, node-3 controller sends a zero output voltage is sent to disable drum brake solenoid valve HS-8 and to apply brake before pump de-strokes.

The diverting valve lines to whip line hoist motor remain open until main hoist 1 control handle is selected for operating main hoist 1.

MAIN HOIST 2 SYSTEM

Main Hoist 2 System Components

See Figures <u>1-32</u> and <u>1-33</u> for the following procedure.

The main hoist 2 system and the main hoist 1 system are similar and operate the same. See Main Hoist 1 System in this manual for main hoist 1 information.

Main hoist 2 drum is located in boom butt. Two main hoist 2 pumps drive two drum motors on each end of drive shaft that is connected to a gearbox. Hydraulic connections between main hoist 2 pumps and motors form a closed-loop system that is controlled with control handle movement and node controllers. The center load drum control handle on the right side console operates the main hoist 2 in all drum mode. Main hoist 2 control handle is inoperable when drum 2 park brake is applied.

Main hoist pump 2/5 is dedicated to operate mast hoist (Drum 5) motor. See Mast Hoist System in this manual for mast hoist information.

Hydraulic charge pressure from left travel charge pump supplies hydraulic pilot pressure to operate both main hoist 2 motor servos. Hydraulic charge pressure from system charge pumps supplies hydraulic make-up fluid to low-pressure side of each main hoist 2 motor. A pressure sender in high-pressure side of each pump leg provides system pressure information to node-1 controller. There are equalizing lines between legs A and legs B when two pumps drive two motors. A fixed orifice between pump ports A and B allows for smoother drum operation.

When drum motors rotate, a speed sensor at one motor rotor monitors and sends an input voltage to node-1 controller. Node-2 controller sends an output voltage to rotation indicator in control handle. As drum rotates faster, the rotation indicator on top of control handle pulsates with a varying frequency that indicates drum rotational speed. The handle command in percent from neutral is displayed on Drum 2 screen in operator's cab.

Continuous changing of closed-loop fluid occurs with leakage in pump, motor, and external sequence/flow valve. Sequence/flow valve opens at 200 psi (14 bar) and removes 4 gallons per minute (15 l/m) of hot fluid from system by dumping fluid into motor case where the fluid returns to tank.

Main Hoist 2 Drum Brake

Hydraulic pressure to operate main hoist 2 drum brakes is from low-pressure side of drum 2/5.

When selected main hoist drum brake switch is in on - park position, drum brake solenoid valve HS-10 (Drum 2) is disabled so brakes are applied to each side of drum shaft. Drum pump does not stroke in response to control handle movement.

When selected main hoist drum brake switch is placed in off-park position, brake solenoid valve HS-10 (Drum 2) remains applied. Brakes remain applied until node-6 controller sends a 24 volt output to release the brake. The drum circuit is active, waiting for a control handle command.

Main Hoist 2 Raising

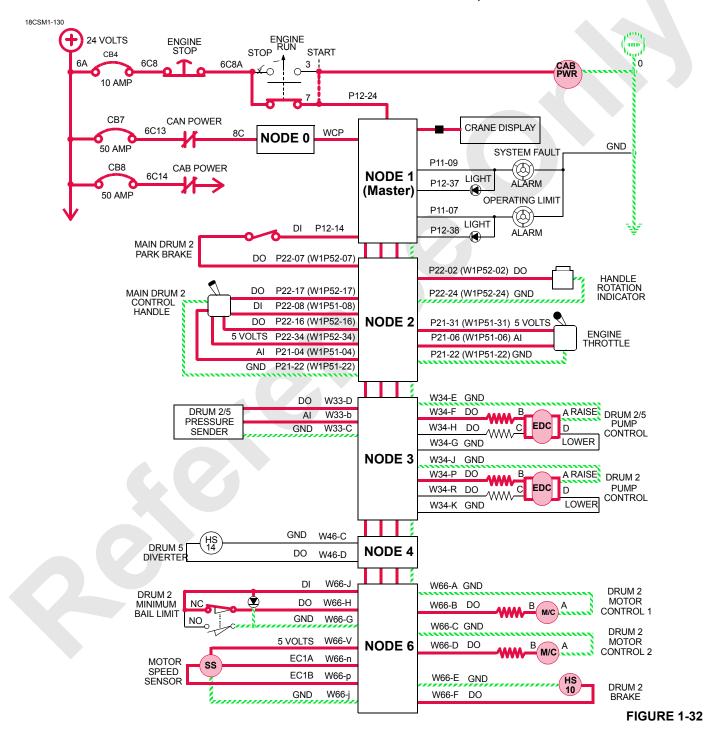
The following drum raising operation is for main hoist 2 (Drum 2) while operating in Standard mode.

When main hoist 2 control handle is moved back for *raising*, an input voltage of 2.4 volts or less is sent to node-1 controller. Node-3 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to each pump EDC in the hoist direction. Node-6 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to both motor PCP's. Node-1 controller checks that drum block-up limit switches are closed and no system faults are present.

Pump EDC's tilt swashplate in the *up* direction to satisfy pressure memory. Node-1 controller compares drum holding pressure to value in pressure memory. When system pressure is high enough, node-6 controller sends a 24 volt output to enable drum brake solenoid valve HS-10. Drum brake solenoid shifts to block drain port and opens port to low-pressure side of drum system to release brakes from both sides of drum shaft.

Each pump EDC tilts swashplate in the up direction as hydraulic fluid flow is from port A of pump 2 and port B of pump 2/5 to port A of left side motor and port B of right side motor. Return fluid is from motor ports A and B to return port B of pump 2 and port A of pump 2/5.

Node controller output voltages to each pump EDC and each motor PCP is relative to control handle movement. The system pumps operate a slave and master with one pump operating continuously and the other pump varying to keep drum at handle command setting. As control handle is moved back, an output voltage increases the pumps swashplate angles. When system pressure exceeds the PCOR (Pressure Compensating Over-Ride) valve setting of 4,930 psi (340 bar), the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The PCOR valve over-rides the command from servo PC valve, increasing motor displacement and output torque and reducing output speed. When PCOR valve closes, control of the motor returns to servo PC valve.


Node controllers are continuously balancing drum system pressures and the motor displacement angle so the motor displacement goes to minimum when control handle is all the way back, if the motor torque requirement is not too high. Node-1 controller monitors motor displacement and controls motor speed by regulating the hydraulic fluid flow through the pump.

When drum control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-3 controller sends a zero output voltage to each pump EDC that moves swashplate to center position. This shifts the motor back to maximum displacement for slower output speed to slow the drum rotation. Node-1 controller stores the load holding pressure in pressure memory.

After control handle center switch opens, node-6 controller sends a zero output voltage to disable drum brake solenoid valve HS-10. Drum brake solenoid valve shifts to block pilot pressure to brakes and opens a line to tank. Brakes apply before drum pump de-strokes.

The diverting valve lines to main hoist 2/5 drum motor remain open until mast hoist control handle is selected for operating mast hoist in Setup mode.

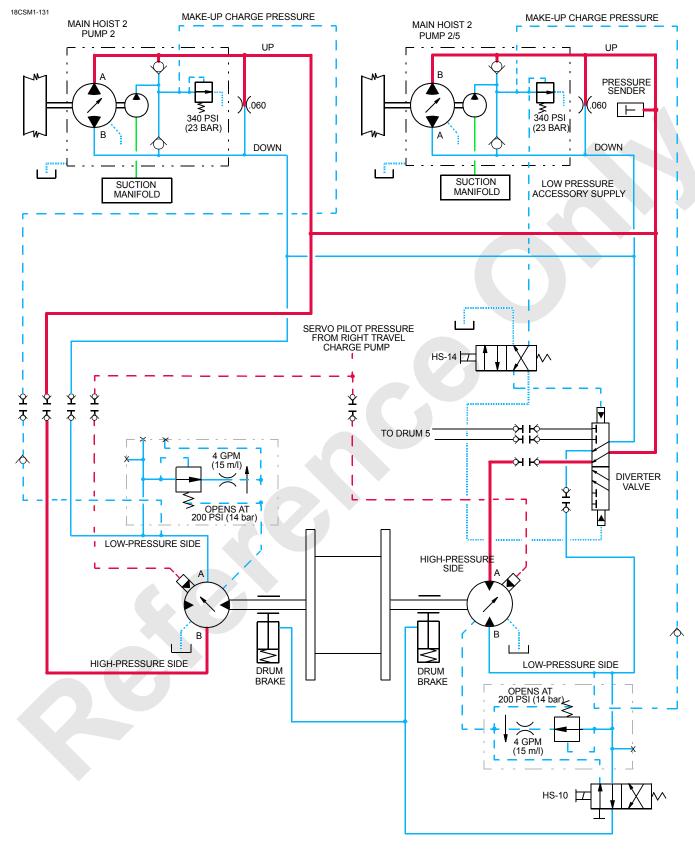


FIGURE 1-33

Main Hoist 2 Lowering

The following drum lowering operation is for main hoist 2 while operating in Standard mode.

When main hoist 2 control handle is moved forward for *lowering* load, an input voltage of 2.6 volts or more is sent to node-1 controller. Node-3 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to each pump EDC in the hoist direction. Node-6 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to each motor PCP. The controller checks that drum block-up limit switches are closed and no system faults are present.

Each pump EDC tilts swashplate in the *up* direction to satisfy pressure memory. Node-1 controller compares holding pressure to value in pressure memory. When system pressure is high enough, node-6 controller sends a 24 volt output to enable drum brake solenoid valve HS-10. The brake solenoid shifts to block drain port and opens port to low-pressure side of drum system to release drum brake.

When brake is released, node controllers output voltage to each pump EDC and to each motor PCP tilts pump swashplate to stroke pump in the lowering direction. Hydraulic fluid flow is from port B of each pump to port B of left side motor and port A of right side motor. Return fluid is from motor ports A and B to return ports A of each pump.

Controller output voltage to each pump EDC and each motor PCP is relative to control handle movement. As drum control handle is pushed forward, an output voltage increases the pump swashplate angle. When system pressure exceeds the PCOR valve setting of 4,930 psi (340 bar), the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The PCOR valve over-

rides the command from servo PC valve, increasing motor displacement and output torque and reducing output speed. When PCOR valve closes, control of the motor returns to servo PC valve.

Node controllers are continuously balancing the system pressure and the motor displacement angle so the motor displacement goes to minimum when control handle is all the way forward, if the motor torque requirement is not too high. Node-3 controller monitors motor displacement and controls motor speed by regulating the hydraulic fluid flow through the pump.

The load weight attempts to drive motor faster than return fluid can return to low-pressure side of pump. System charge pump maintains fluid supply at a positive pressure to motor. Pump swashplate position restricts motor over speed. Pressure builds on fluid return side of closed-loop, acting as a hydraulic brake to control lowering speed.

When drum control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-3 controller sends a zero output voltage to each pump EDC that moves swashplate to center position. This shifts the motor back to maximum displacement for slower output speed to slow the drum rotation. Node-1 controller stores the load holding pressure in pressure memory. After control handle center switch opens, node-6 controller sends a zero output voltage is sent to disable drum brake solenoid valve HS-10 and to apply brake before pump de-strokes.

The diverting valve lines to main hoist 2/5 drum motor remain open until mast hoist control handle is selected for operating mast hoist in Setup mode.

MAST HOIST DRUM 5 SYSTEM

Mast Hoist System Components

See Figures <u>1-34</u> and <u>1-35</u> for the following procedure.

The live mast is rectangular shaped structure that supports the main mast. The live mast is also used for crane assembly and disassembly.

Mast raising cylinders are required to raise the live mast to a working position of 114° to 160°. In crane Setup mode, live mast-raising sequence is controlled automatically by the computer program and the mast hoist control handle. Mast raising and lowering rate is controlled by engine speed, as it regulates pay out and haul in of the cable reeving between mast hoist (Drum 5) and gantry sheaves.

Hydraulic connections between main hoist 2/5 pump and mast hoist motor forms a closed-loop system that is controlled with control handle movement and node controllers. The far right drum control handle on the right side console operates the mast hoist in Setup mode only. The mast hoist control handle is inoperable when mast hoist park brake is applied.

The mast hoist is located on the rotating bed. Main hoist 2 (Drum 2) and mast hoist form a dedicated system where only one function can be operated at a time.

In Setup mode, main hoist 2/5 pump drives the mast hoist motor through a diverting valve. The motor drives a drum shaft that is connected to a gearbox. Drum 5 diverting solenoid valve remains open to drum 5 motor until another mode is selected.

A pressure sender in high-pressure side of system provides system pressure information to node-1 controller. A fixed orifice between pump ports A and B allows for smoother drum operation.

Continuous changing of fluid occurs through leakage in pump and motor. Fluid from system is dumped into the motor case where the fluid returns to tank.

When mast hoist drum motor rotates, a speed sensor at motor rotor monitors and sends an input voltage to node-1 controller. Node-2 controller sends an output voltage to rotation indicator in control handle. As drum rotates faster, the rotation indicator on top of control handle pulsates with a varying frequency that indicates drum rotational speed.

Mast Hoist Brake and Pawl

Hydraulic charge pressure to operate mast hoist (Drum 5) brake and pawl is from main hoist 2/5 charge pump. Hydraulic charge pressure from pump must be above 200 psi (14 bar) for brake or pawl to retract from drum.

When mast hoist (Drum 5) brake switch is in on - park position, brake solenoid valve HS-11 is disabled and drum brake is applied. Mast hoist drum pawl in solenoid valve HS-

12 is enabled to keep pawl applied to mast hoist drum flange. The pawl in solenoid is open to charge pressure from pump 2/5 to piston end of cylinder to extend pawl to drum flange. Mast hoist pump does not stroke in response to mast hoist control handle movement.

When mast hoist (Drum 5) brake switch is placed in off - park position, brake remains applied to drum until node-6 controller sends a 24 volt output to brake solenoid valve HS-11 to release brake. Node-6 controller sends 24 volt output to enable drum pawl out solenoid valve HS-13 in the out direction. The pawl out solenoid shifts to block drain port and opens charge pressure port from pump 2/5 to rod end of cylinder to retract pawl from drum flange. Mast system circuit is active, waiting for a control handle command.

Mast Raising Cylinders

The mast raising cylinders can be manually operated with controls on the hand-held radio remote control for extending/retracting mast cylinders without rope rigging. Power is available to hand-held radio remote control when Setup Remote mode is selected, engine is running, and power button is pressed.

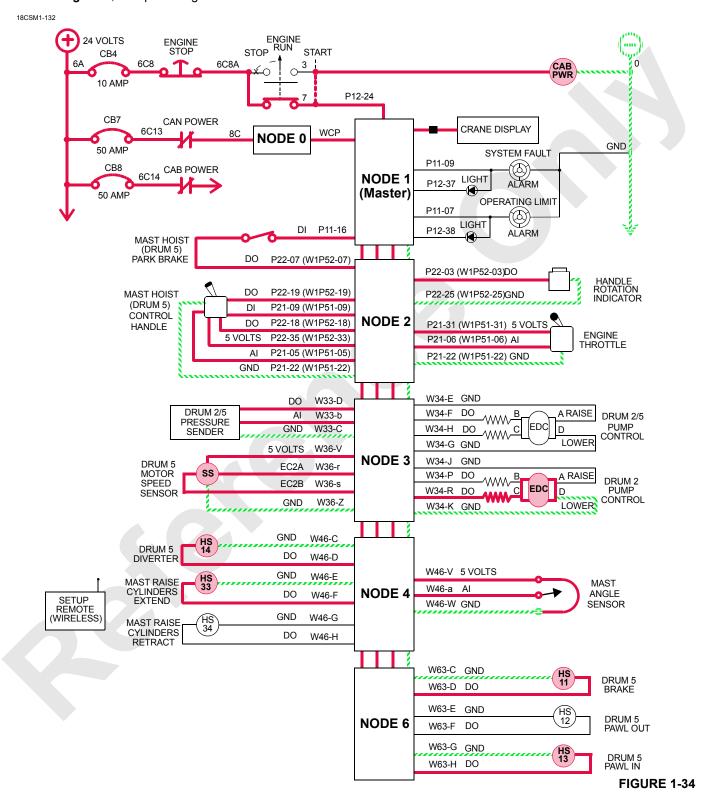
Hydraulic pressure to operate mast-raising cylinders is from accessory pump. Node-1 controller monitors system pressure to control accessory system proportional relief valve setting. Mast raising cylinders proportional directional control valve is "motor spooled" where both cylinder ports and tank port of the valve spool section are connected in center position. This type of spool prevents premature opening of load equalizing valves. Load equalizing valves ensures mast-raising cylinders operate in unison, protecting mast from structural damage caused by twisting. Load equalizing valves also provide support resistance against mast to ensure control of the unit while rotating it at assembly.

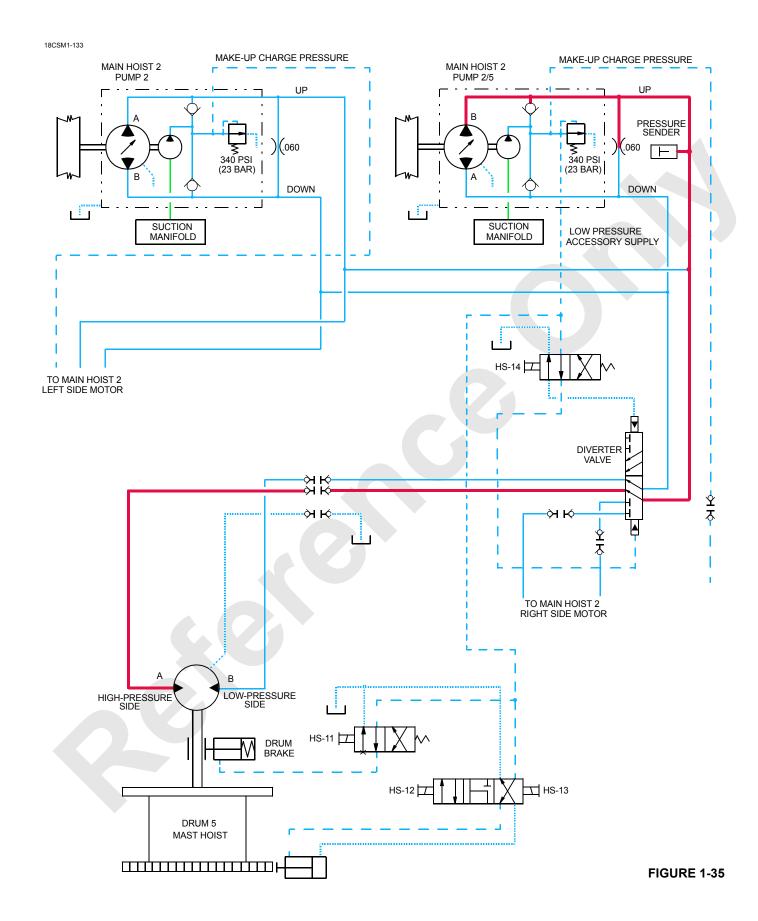
When mast cylinders switch is placed in the extend position and held, an input voltage from Setup Remote is sent to node-1 controller. Node-4 controller sends a 24 volt output to enable mast raise cylinders solenoid valve HS-33.

When mast cylinders switch is placed in the retract position and held, an input voltage is sent to node-1 controller. Node-4 controller sends a 24 volt output to enable to mast raise cylinders solenoid valve HS-34.

Mast Hoist Raising from Transport Position

The following drum lowering operation is for mast hoist (Drum 5) while raising from transport position 0° (mast lowering) to 160°. Node-4 controller monitors the mast angle sensor in Setup mode.


When Setup mode is selected, Node-4 controller sends a 24 volt output to drum 5 diverting solenoid valve HS-14 to shift solenoid valve and apply hydraulic pressure to shift diverting



valve to open lines to drum 5 motor and close lines to main hoist 2 motor.

When mast hoist (Drum 5) control handle is moved forward for *lowering* mast, an input voltage of 2.4 volts or less is sent

to node-1 controller. Node-3 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to main hoist pump 2/5 EDC in the lower direction.

Main hoist 2/5 pump EDC tilts swashplate in the up direction to satisfy pressure memory. Node-1 controller compares drum holding pressure to value in pressure memory. When system pressure is high enough, node-6 controller sends a 24 volt output to drum brake solenoid valve HS-11. The drum brake solenoid shifts to block drain port and opens charge pressure port from pump 2/5 to release brake.

When brake is released, node-3 controller sends a 24 volt output voltage to pump EDC to tilt swashplate to stroke pump in the lower direction. In the lower direction, hydraulic fluid flow is from port B of pump to port A of motor. Return fluid is from port B of motor to port A of pump. As mast raises from transport position, mast hoist drum pays out wire rope between mast drum and gantry sheaves.

Node-4 controller sends a 24 volt output to enable mast raising cylinders solenoid valve HS-33 in extend (mast raising) direction. Solenoid valve shifts to block tank port and open port to system pressure controlled by node-1 controller.

The accessory system pressure builds with the actual pressure between a minimum of 500-psi (34 bar) at the beginning and 4,000 psi (276 bar) after the mast starts moving.

From the accessory valve, the fluid pressure enters free-flow check valve sections on side "A" of load equalizing valve. From equalizing valve, fluid enters counterbalance valves and piston end of mast cylinders, extending cylinder rods to raise the mast assembly. Node-4 controller monitors accessory system pressure to control mast cylinder raising speed rate.

Fluid flow from rod end of mast raising cylinders is blocked by free-flow check valve sections on side "B" of counterbalance valves and flows through valve flow restrain sections preset for a relief pressure of 3,500 psi (240 bar). Counterbalance valves operate with a 5:1 pilot ratio of the relief valve pressure, permitting valve to open when pressure in rod end of the cylinders is approximately 700 psi (48 bar). Hydraulic fluid from side "B" sections of both counterbalance valves combines, and the free-flow check valve section on side "B" of load equalizing valve blocks the flow.

The fluid then passes through the valve flow restrain section that is preset at 4,000 psi (276 bar). Load equalizing valve operates with a 1.5:1 pilot ratio of the relief valve pressure, permitting valve to open when the hydraulic pressure on side "A" of the load-equalizing valve is approximately 2,670 psi (185 bar). Restraining section on side "B" of load equalizing valve opens, controlling flow of fluid out of the cylinders to ensure cylinder operation is balanced.

When the mast cylinders are extending, node-3 controller monitors mast hoist drum speed sensor. Node-1 controller maintains a speed that is proportional to accessory system hydraulic pressure applied to the mast raising cylinders.

Node-4 controller monitors the mast angle sensor when mast is moving. When mast is raised to 115°, node-3 controller sends a zero output voltage to pump EDC. Node-4 controller sends a zero output voltage to shift spool of mast raising cylinder solenoid valve HS-33 to center position.

Node-3 controller output voltage to pump EDC is relative to control handle movement. The system pump varies flow to keep drum at handle command setting. As control handle is moved forward, an output voltage increases the pump swashplate angle.

The live mast continues to lower until the mast hoist control handle is moved to neutral position. Node-3 controller sends a zero output voltage to main hoist pump 2/5 EDC that moves swashplate to center position.

After control handle center switch opens, node-6 controller sends a zero output voltage is sent to disable mast hoist brake solenoid valve HS-11 to apply brake before pump destrokes.

Mast Hoist Raising to Transport Position

The following drum raising operation is for mast hoist (Drum 5) while lowering from 160° to transport position 0° (mast raising). Node-4 controller monitors the mast angle sensor in Setup mode.

When Setup mode is selected, Node-4 controller sends a 24 volt output to drum 5 diverting solenoid valve HS-14 to shift solenoid valve and apply hydraulic pressure to shift diverting valve to open lines to drum 5 motor and close lines to main hoist 2 motor.

When mast hoist (Drum 5) control handle is moved back for *raising*, an input voltage of 2.6 volts or more is sent to node-1 controller. Node-3 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to main hoist pump 2/5 EDC in the raise direction.

Main hoist 2/5 pump EDC tilts the swashplate in the raise direction to satisfy pressure memory. Node-1 controller compares drum holding pressure to value in pressure memory. When system pressure is high enough, node-6 controller sends a 24 volt output to drum brake solenoid valve HS-11. The drum brake solenoid shifts to block drain port and opens charge pressure port from pump 2/5 to release brake.

When brake is released, node-3 controller sends a 24 volt output voltage to pump EDC to tilt swashplate to stroke pump in the raise direction. In the raise direction, hydraulic fluid flow is from port B of pump to port A of motor. Return fluid is from port B of motor to port A of pump. As mast raises to transport position, mast hoist drum hauls in wire rope between mast drum and gantry sheaves.

Before the mast is raised to 114°, mast angle sensor sends an input voltage to node-1 controller. Node-3 controller sends a 24 volt output to enable mast raising cylinders solenoid valve HS-33 in extend direction. The mast raising cylinders extend sequence is explained in "Mast Hoist Raising from Transport Position".

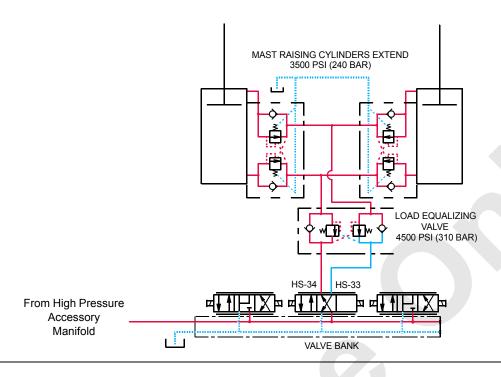
When the mast is raised to 114°, the live mast is resting on the cylinder arms. The accessory system pressure builds with the actual pressure between a minimum of 3,000-psi (207 bar) at the beginning and 4,000 psi (276 bar) after the mast cylinders start moving down.

From the accessory valve, the fluid pressure enters free-flow check valve sections on side "B" of load equalizing valve. From equalizing valve, fluid enters counterbalance valves and rod end of mast cylinders, retracting cylinder rods.

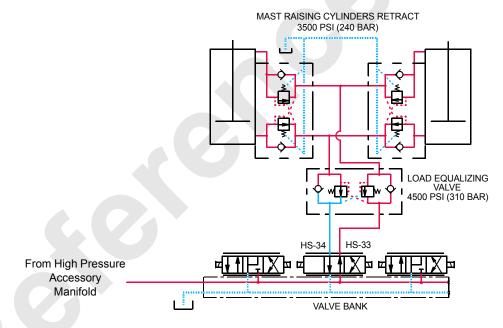
Fluid flow from piston end of mast raising cylinders is blocked by free-flow check valve sections on side "A" of counterbalance valves and flows through valve flow restrain sections preset for a relief pressure of 3,500 psi (240 bar). Counterbalance valves operate with a 5:1 pilot ratio of the relief valve pressure, permitting valve to open when pressure in piston end of the cylinders is approximately 700 psi (48 bar).

Hydraulic fluid from side "A" sections of both counterbalance valves combines, and the free-flow check valve section on side "A" of load equalizing valve blocks the flow. The fluid then passes through the valve flow restrain section that is preset at 4,000 psi (276 bar). Load equalizing valve operates with a 1.5:1 pilot ratio of the relief valve pressure, permitting valve to open when the hydraulic pressure on side "A" of the load-equalizing valve is approximately 2,670 psi (185 bar). Restraining section on side "B" of load equalizing valve opens, controlling flow of fluid out of the cylinders to ensuring cylinder operation is balanced.

When the mast cylinders are retracting, node-3 controller monitors mast hoist drum speed sensor. Node-1 controller maintains a speed that is proportional to accessory system hydraulic pressure applied to the mast raising cylinders.


Node-3 controller output voltage to pump EDC is relative to control handle movement. The system pump varies flow to keep drum at handle command setting. As control handle is moved back, an output voltage increases the pump swashplate angle.

Node-4 controller monitors the mast angle sensor when mast is moving. When mast is at 0°, node-3 controller sends a zero output voltage to pump EDC that moves swashplate to center position. After control handle center switch opens, node-6 controller also sends a zero output voltage to disable mast hoist brake solenoid valve HS-11 to apply brake before mast hoist pump de-strokes.


Node-4 controller sends a zero output voltage to shift spool of mast raising cylinder solenoid valve HS-34 to center position.

18CSM1-135

FIGURE 1-36

LUFFING JIB DRUM 6 (OPTIONAL) SYSTEM

Luffing Jib System Components

See Figures <u>1-37</u> and <u>1-38</u> for the following procedure.

One hydraulic pump drives one hydraulic motor and gearbox on luffing jib drum. In Luffing Jib mode luffing jib hoist (Drum 6) is controlled with control handle on left side console, while the boom hoist (Drum 4) is controlled by control handle on far right of right side console. Luffing jib control handle is inoperable when luffing jib park brake is applied.

Hydraulic charge pressure from left travel charge pump supplies hydraulic pilot pressure to operate luffing jib motor servo. Hydraulic charge pressure from system charge pump supplies hydraulic make-up fluid to low-pressure side of luffing jib motor. A pressure sender in high-pressure side of pump leg provides system pressure information to node-1 controller. A fixed orifice between pump ports A and B allows for smoother drum operation.

When luffing jib motor rotates, a speed sensor monitors motor rotor movement and sends an input voltage to node-1 controller. Node-2 controller sends a 24 volt output to rotation indicator in control handle. As luffing jib drum rotates faster, the rotation indicator on top of control handle pulsates with a varying frequency that indicates drum rotational speed.

Continuous changing of closed-loop fluid occurs through leakage in pump, motor, and external sequence/flow valve. Sequence/flow valve opens at 200 psi (14 bar) and removes 4 gallons per minute (15 l/m) of hot fluid from system by dumping the fluid into the motor case where fluid returns to tank.

Luffing Jib Brake and Pawl

Hydraulic pressure to operate luffing jib brake is from lowpressure side of luffing jib system. An electrical motor operates the boom hoist drum pawl.

When luffing jib (Drum 6) brake switch is in on - park position, luffing jib brake solenoid valve HS-15 is disabled to apply brake to drum. Luffing jib electric drum pawl in relay K1 is enabled to keep pawl applied to boom hoist drum. Boom hoist pump does not stroke in response to boom hoist control handle movement.

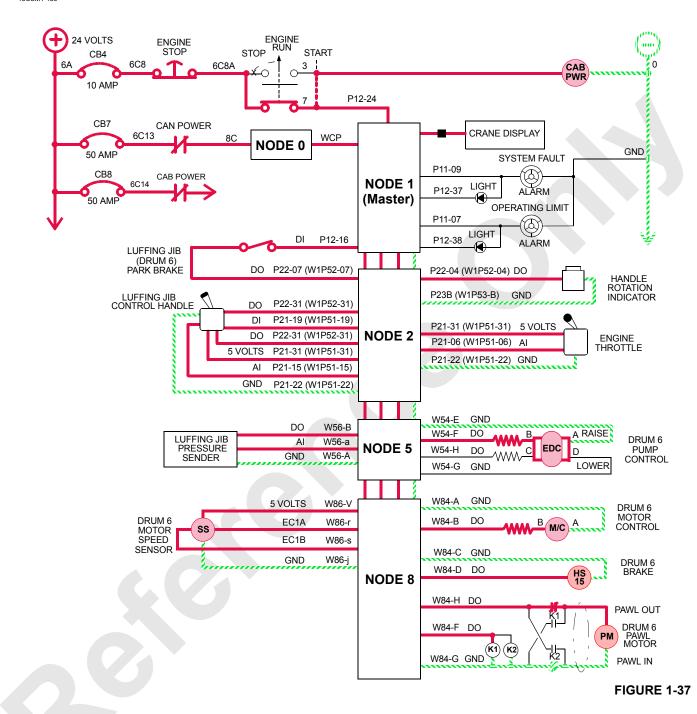
When luffing jib (Drum 6) brake switch is placed in off - park position, luffing jib brake remains applied to luffing jib drum until node-8 controller sends a 24 volt output to brake solenoid valve HS-15 to release brake. Node-8 controller sends 24 volt output to enable luffing jib pawl electric motor K2 relay in the pawl out direction. Luffing jib system circuit is active, waiting for a control handle command.

Luffing Jib Raise

Node-1 controller checks that luffing jib up limit switch is closed and no hydraulic system fault is present. If a block up limit or RCL operating fault occurs while luffing, node-1 controller sends an output signal to stop luffing jib drum. Corrective action for these operating faults is to raise the jib.

When luffing jib control handle is moved back for luffing *up*, an input voltage of 2.4 volts or less is sent to node-1 controller. Node-5 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to luffing pump EDC. Node-8 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to luffing motor PCP.

Pump EDC tilts swashplate in the *up* direction to satisfy pressure memory. Node-1 controller compares luffing holding pressure to value in pressure memory. When system pressure is high enough, node-8 controller sends a 24 volt output to luffing jib brake solenoid valve HS-15. The brake solenoid shifts to block drain port and opens port to low-pressure side of luffing jib system to release luffing jib drum brake.


Pump EDC continues to tilt swashplate in the up direction as hydraulic fluid flow is from port B of pump to port A of motor. Return fluid is from port B of motor to port A of pump.

Node-5 controller output voltage to pump EDC and node-8 controller output voltage to motor PCP is relative to control handle movement. As luffing jib control handle is moved back, pump swashplate angle is increased. When system pressure exceeds the PCOR (Pressure Compensating Over-Ride) valve setting of 4,930 psi (340 bar), the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The PCOR valve over-rides the command from servo PC valve, increasing motor displacement and output torque and reducing output speed. When PCOR valve closes, control of the motor returns to servo PC valve.

Node controllers are continuously balancing system pressure and motor displacement angle so the motor displacement goes to minimum when control handle is all the way back, if the motor torque requirement is not too high. Node-6 controller monitors motor displacement and controls motor speed by regulating hydraulic fluid through the pump.

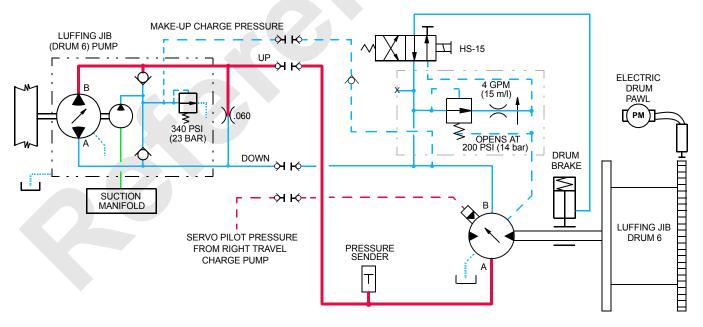
When luffing jib control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-5 controller sends a zero output voltage to luffing jib pump EDC that moves swashplate to center position. This shifts the motor back to maximum displacement for slower output speed to slow the drum rotation. The controller stores the load holding pressure in pressure memory. After control handle center switch opens, a zero output voltage is sent to disable luffing brake solenoid valve HS-15 to apply brake before pump destrokes.

Luffing Jib Lower

When luffing jib control handle is moved forward for luffing *down*, an input voltage of 2.6 volts or more is sent to node-1 controller. Node-5 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to luffing pump EDC. Node-8 controller sends a variable zero to 24 volt output that is divided by a resistor and applied to motor PCP.

Pump EDC tilts swashplate in the *up* direction to satisfy pressure memory. Node-1 controller compares luffing holding pressure to value in pressure memory. When system pressure is high enough, node-8 controller sends a 24 volt output to luffing jib brake solenoid valve HS-15. The brake solenoid shifts to block drain port and opens port to low-pressure side of luffing jib system to release luffing jib drum brake.

When brake is released, pump EDC continues to tilt swashplate to stroke pump in the down direction. In the down direction, hydraulic fluid flow is from port A of pump to port B of motor. Return fluid is from port A of motor to port B of pump.


Node-5 controller output voltage to pump EDC and node-8 controller output voltage to motor PCP is relative to control handle movement. As luffing jib control handle is pushed forward, pump swashplate angle is increased. When system pressure exceeds the PCOR (Pressure Compensating Over-Ride) valve setting of 4,930 psi (340 bar), the valve shifts to direct flow from shuttle valve into maximum displacement side of servo cylinder. The PCOR valve over-rides the

command from servo PC valve, increasing motor displacement and output torque and reducing output speed. When PCOR valve closes, control of the motor returns to servo PC valve.

Node controllers are continuously balancing the system pressure and the motor displacement angle so the motor displacement goes to minimum when control handle is all the way forward, if the motor torque requirement is not too high. Node-8 controller monitors motor displacement and controls motor speed by regulating the hydraulic fluid flow through the pump.

The weight of luffing jib attempts to drive motor faster than return fluid can return to low-pressure side of pump. System charge pump maintains fluid supply at a positive pressure to motor. Pump swashplate position restricts the returning fluid flow. Pressure builds on fluid return side of closed-loop, acting as a hydraulic brake to control lowering speed.

When luffing jib control handle is moved to neutral position, node-1 controller compensates for hydraulic system leakage or changing engine speed. Node-5 controller sends a zero output voltage to luffing jib pump EDC that moves swashplate to center position. This shifts the motor back to maximum displacement for slower output speed to slow the drum rotation. Node-1 controller stores the load holding pressure in pressure memory. After control handle center switch opens, Node-8 controller sends a zero output to disable luffing jib brake solenoid valve HS-15 to apply brake before luffing jib pump de-strokes.

FIGURE 1-38

ACCESSORY SYSTEM COMPONENTS

Accessory Systems

Accessory system components include the rotating bed jacking cylinders, adapter frame pins, boom hinge pins, mast pins, mast raising cylinders, cab tilt, and rigging winch.

The accessory pumps are the hydraulic pressure source to operate accessory system components. The accessory system proportional relief valve is controlled by node-5 controller. The accessory system and the high pressure accessory system pressure are monitored by separate pressure senders. During normal operation the relief valve is set at approximately 150 psi (10 bar). Excess supply flow

from fixed displacement accessory pump is dumped through valve to tank. When a component of either accessory system is enabled, an input signal is sent to node-1 controller. Node-5 controller sends a variable 0 to 24 volt signal to accessory system proportional relief valve solenoid to increase the relief valve setting up to 3,000 psi (207 bar), except for mast raising cylinders where the pressure is 4,000 psi (276 bar). The accessory systems pressure increases to operate selected component.

Power is available to hand-held radio remote control when Setup Remote mode is selected, engine is running, and power button is pressed.

Jacking Cylinders

See Figures $\underline{1-39}$ and $\underline{1-40}$ for the following procedure.

Telescopic type jacking cylinders are mounted on each corner of rotating bed. Jacking cylinder operation is controlled with switches on hand-held radio remote control and programming. Operation of all four jacking cylinders is the same. The following description of operation is for a single jacking cylinder.

Keep rotating bed as level as possible while jacking. Operating jacking cylinder with rotating bed more than three degrees out of level can cause structural damage to jacking cylinders and possible collapse of rotating bed.

The rotating bed level sensor keeps rotating bed level when the ALL switch is used. The sensor controls fluid to each cylinder by opening/closing proportional control valves.

Each jacking cylinder has a counterbalance valve at the cylinder ports. Counterbalance valves ensure smooth control when raising or lowering the crane. Counterbalance valves lock the jacking cylinders in place if there is a hydraulic line breakage or accidental operation of control valve when the crane's power is shut down. Also, counterbalance valves provide relief protection for the cylinders and shields them from mechanical overloading.

When a jacking cylinder proportional control valves is not enabled, it shifts to neutral position where both valve section cylinder ports are connected to tank. This prevents inline pressure from opening counterbalance valve, holding rotating bed load in position by the counterbalance valve.

Rotating bed Jacking - Raise

Move desired jacking switch to extend position and hold. An input voltage is sent to node-1 controller. Node-6 controller sends a 24 volt output to enable selected jacking cylinder proportional control valve (HS-20) and shifts valve to the raise position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to selected jacking cylinder(s) proportional control valve. Hydraulic fluid exits valve and enters free-flow check valve section of jacking cylinder counterbalance valve. Hydraulic fluid then enters piston end of jacking cylinder, extending cylinder to raise the rotating bed. Node-4 controller monitors accessory system pressure sender to control jacking cylinder raising speed rate.

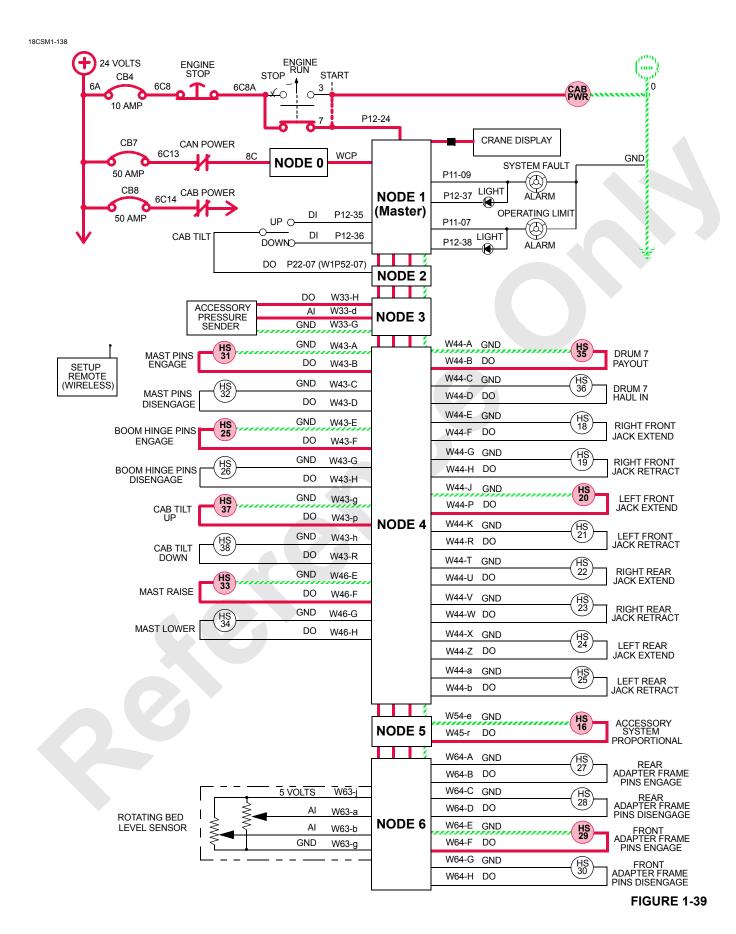
Hydraulic fluid returning to tank from rod end of the jacking cylinder is blocked by the free-flow check valve section of counterbalance valve and flows through flow restraining section that has a relief setting of 2,500 psi (172 bar). The counterbalance valve acts as a deceleration control and functions with a 3:1 pilot ratio of the relief pressure. This permits the valve to open when the pressure in rod end of the cylinder is approximately 833 psi (57 bar). Restraining section of counterbalance valve opens, controlling the fluid out of the jacking cylinder. Hydraulic fluid then flows through free-flow check valve section of flow control valve before entering lower accessory valve. Hydraulic fluid leaving the lower accessory valve is returned to tank.

When rotating bed switch is moved back to center position, node-4 controller sends a zero output voltage to shift spool of rotating bed solenoid valve HS-20 to center position.

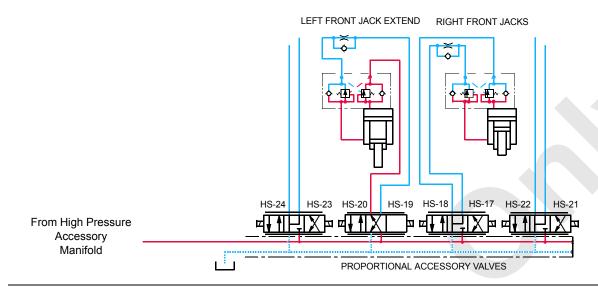
Rotating bed Jacking - Lower

Move desired jacking switch to retract position and hold. An input voltage is sent to node-1 controller. Node-6 controller sends a 24 volt output to enable selected jacking cylinder proportional control valve HS-21 and shifts valve to the lower position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to selected jacking cylinder(s) proportional control valve. Hydraulic fluid exits valve and enters the restraining section of flow control valve. The restraining section controls the rate of speed for the cylinder to retract by limiting the fluid velocity before passing through the free-flow check valve section of counterbalance valve. Hydraulic fluid then flows to rod end of jacking cylinder.


Hydraulic pressure trapped by the cylinder counterbalance valve at piston end of the jacking cylinder supports the weight and gravitational force of rotating bed. Node-4

controller monitors accessory system pressure sender to control jacking cylinder lowering speed rate.


Hydraulic fluid returning to tank from piston end of the jacking cylinder is blocked by the free-flow check valve section of counterbalance valve. From counterbalance valve flow is through flow restraining section that has a relief setting of 2,500 psi (172 bar). The counterbalance valve acts as a deceleration control and functions with a 3:1 pilot ratio of the relief pressure. This permits the valve to open when the pressure in piston end of the cylinder is approximately 833 psi (57 bar).

Restraining section of counterbalance valve opens, controlling the fluid out of the jacking cylinder. Hydraulic fluid then flows through free-flow check valve section of flow control valve before entering lower accessory valve. Hydraulic fluid leaving the lower accessory valve is returned to tank.

When rotating bed switch is moved back to center position, node-4 controller sends a zero output voltage to shift spool of rotating bed solenoid valve HS-21 to center position.

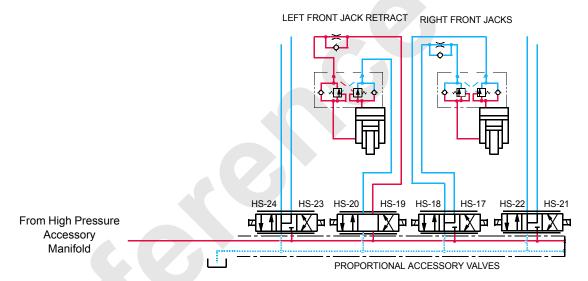


FIGURE 1-40

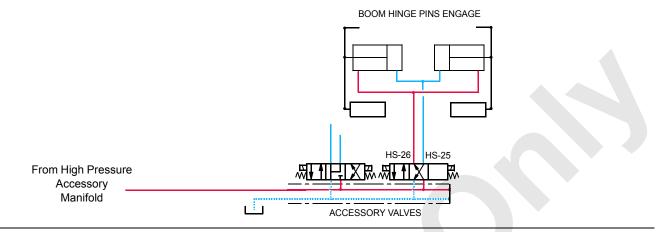
Boom Hinge Pins

See Figures $\underline{1-39}$ and $\underline{1-41}$ for the following procedure.

During normal operation the boom hinge pins solenoid valve is "motor spooled" where both cylinder ports and tank port of valve spool section are connected in center position.

Power is available to hand-held radio remote control when Setup Remote mode is selected, engine is running, and power button is pressed. The boom hinge pins cannot be engaged/disengaged until hydraulic line are connected between crane and boom butt and keeper plates from pins are removed.

When boom hinge pins switch is placed in the engage position and held, an input voltage is sent to node-1 controller. Node-4 controller sends a 24 volt output to enable boom hinge pins solenoid valve HS-25 and shifts valve to the engage position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.


When an accessory valve spool shifts, supply flow to the other accessory valves is limited. The accessory system pressure sender monitors accessory system pressure.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to boom hinge pins accessory valve. Hydraulic fluid leaves the accessory valve and enters rod end of boom pin cylinder, retracting cylinder rod to engage the boom hinge pins. Hydraulic fluid from piston end of boom pin cylinder leaves accessory system valve and returns to tank. When boom hinge pins switch is released, solenoid valve HS-25 returns to center position.

When boom hinge pins switch is placed in the disengage position and held an input voltage is sent to node-1 controller. Node-4 controller sends a 24 volt output to enable boom hinge pins solenoid valve HS-26 and shifts valve to the disengage position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to boom hinge pins accessory valve. Hydraulic fluid leaves the accessory valve and enters piston end of boom pin cylinder, extending cylinder rod to disengage the boom hinge pins. Hydraulic fluid from rod end of boom pin cylinder leaves accessory system valve and returns to tank. When boom hinge pins switch is released, solenoid valve HS-26 returns to center position.

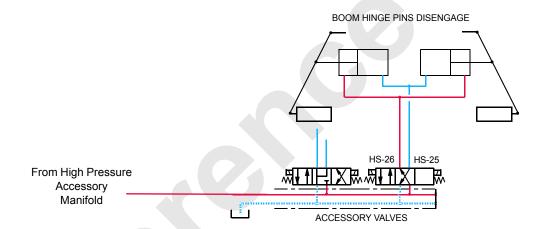


FIGURE 1-41

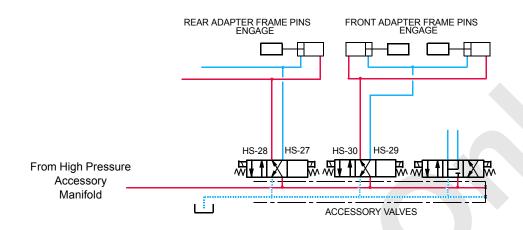
Adapter Frame Pins

See Figures 1-39 and 1-42 for the following procedure.

During normal operation the adapter frame pins solenoid valve is "motor spooled" where both cylinder ports and tank port of valve spool section are connected in center position.

Power is available to hand-held radio remote control when setup remote mode is selected, engine is running, and power button is pressed. The adapter frame pins cannot be engaged/disengaged until keeper plates from pins are removed.

When front or rear adapter frame pins switch is placed in the engage position and held, an input voltage is sent to node-1 controller. Node-6 controller sends a 24 volt output to enable selected adapter frame pins solenoid valve HS-29 (front) or HS-27 (rear) and shifts valve to the engage position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.


When an accessory valve spool shifts, supply flow to the other accessory valves is limited. The accessory system pressure sender monitors accessory system pressure.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to adapter frame pins accessory valve. Hydraulic fluid leaves the accessory valve and enters piston end of selected pin cylinders, extending cylinder rod to engage the adapter frame pins. Hydraulic fluid from rod end of pin cylinders leaves accessory system valve and returns to tank. When adapter frame pins switch is released, solenoid valve HS-29 (front) or HS-27 (rear) returns to center position.

When adapter frame pins switch is placed in the disengage position and held, an input voltage is sent to node-1 controller. Node-6 controller sends a 24 volt output to enable selected adapter frame pins solenoid valve HS-30 (front) or HS-28 (rear) and shifts valve to the disengage position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to adapter frame pins accessory valve. Hydraulic fluid leaves the accessory valve and enters rod end of pin cylinders, retracting cylinder rods to disengage the adapter frame pins. Hydraulic fluid from piston end of pin cylinders leaves accessory system valve and returns to tank. When adapter frame pins switch is released, solenoid valve HS-30 (front) or HS-28 (rear) returns to center position.

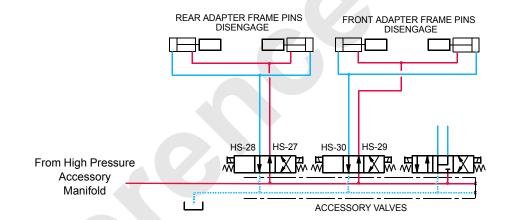


FIGURE 1-42

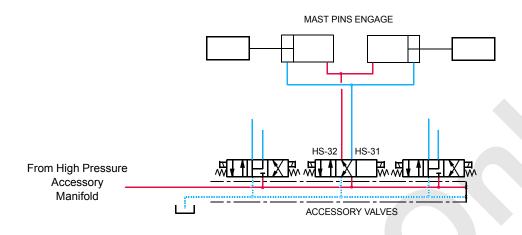
Mast Pins

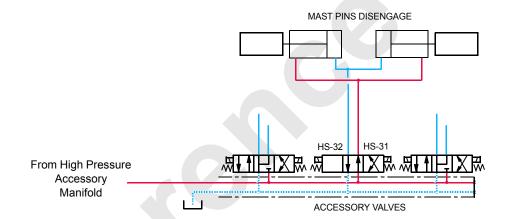
See Figures 1-39 and 1-43 for the following procedure.

During normal operation the mast pins solenoid valve is "motor spooled" where both cylinder ports and tank port of valve spool section are connected in center position.

Power is available to hand-held radio remote control when setup remote mode is selected, engine is running, and power button is pressed. The mast pins cannot be engaged/ disengaged until keeper plates from pins are removed.

When mast pins switch is placed in the engage position and held, an input voltage is sent to node-1 controller. Node-4 controller sends a 24 volt output to enable mast pins solenoid valve HS-31 and shifts valve to the engage position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.


When an accessory valve spool shifts, supply flow to the other accessory valves is limited. The accessory system pressure sender monitors accessory system pressure.


Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to mast pins accessory valve. Hydraulic fluid leaves the accessory valve and enters piston end of mast pin cylinders, extending cylinder rods to engage the mast pins. Hydraulic fluid from rod end of mast pin cylinders leaves accessory system valve and returns to tank. When mast pins switch is released, solenoid valve HS-31 returns to center.

When mast pins switch is placed in disengage position and held an input voltage is sent to node-1 controller. Node-4 controller sends a 24 volt output to enable mast pins solenoid valve HS-32 and shifts valve to disengage position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to mast pins accessory valve. Hydraulic fluid exits accessory valve and enters rod end of mast pin cylinders, extending cylinder rods to disengage the mast pins. Hydraulic fluid from piston end of mast pin cylinders exits accessory system valve and returns to tank. When mast pins switch is released, solenoid valve HS-32 returns to center.

FIGURE 1-43

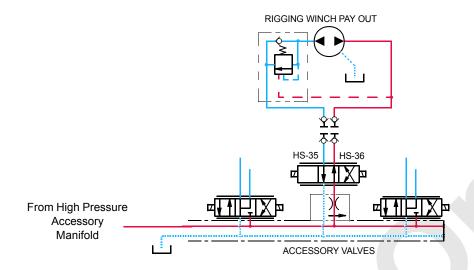
Rigging Winch (Drum 7)

See Figures $\underline{1-39}$ and $\underline{1-44}$ for the following procedure.

The rigging winch (Drum 7) is located in the boom butt. During normal operation the rigging winch solenoid valve is "motor spooled" where both cylinder ports and tank port of valve spool section are connected in center position.

Power is available to hand-held radio remote control when setup remote mode is selected, engine is running, and power button is pressed.

When rigging winch switch is placed in pay out position and held, an input voltage is sent to node-1 controller. Node-4 controller sends a 24 volt output to enable rigging solenoid valve HS-35 and shifts valve to the pay out position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.


When an accessory valve spool shifts, supply flow to the other accessory valves is limited. The accessory system pressure sender monitors accessory system pressure.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to rigging winch accessory valve. Hydraulic fluid leaves the accessory valve and enters pay out side of winch motor to pay out wire rope at a fixed speed. Return hydraulic fluid from motor leaves accessory system valve and returns to tank. When rigging winch switch is released, solenoid valve HS-35 returns to center position.

When rigging winch switch is placed in the haul in position and held an input voltage is sent to node-1 controller. Node-4 controller sends a 24 volt output to enable rigging winch solenoid valve HS-36 and shifts valve to the haul in position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to rigging winch accessory valve. Hydraulic fluid leaves the accessory valve and enters haul in side of winch motor to haul in wire rope at a fixed speed. Return hydraulic fluid from motor leaves accessory system valve and returns to tank. When rigging winch switch is released, solenoid valve HS-36 returns to center position.

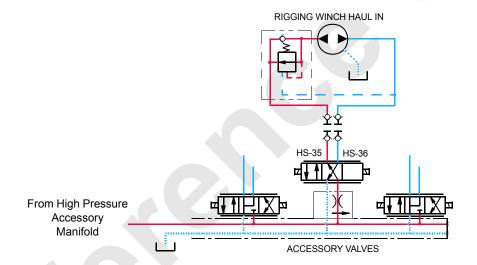


FIGURE 1-44

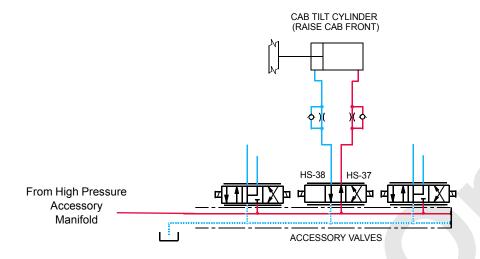
Cab Tilt

See Figures <u>1-39</u> and <u>1-45</u> for the following procedure.

The cab tilt cylinder is attached to cab frame. During normal operation the cab tilt solenoid valve is "motor spooled" where both cylinder ports and tank port of valve spool section are connected in center position. The cab tilt switch is on the right side console in operator's cab.

When top of cab tilt switch (raise front of cab) is pushed and held, an input voltage is sent to node-1 controller. Node-4 controller sends a 24 volt output to enable cab tilt up solenoid valve HS-37 and shifts valve to the up position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to cab tilt accessory valve. Hydraulic fluid exits valve and enters free-flow check valve before entering piston end of cylinder, extending cylinder rod to raise the cab front.


Hydraulic fluid from rod end of cylinder enters free-flow check valve before entering accessory valve and returns to tank. When cab tilt switch is released, solenoid valve HS-37 returns to center position.

When bottom of cab tilt switch (lower front of cab) is pushed and held, an input voltage is sent to node-1 controller. Node-4 controller sends a 24 volt output to enable solenoid valve HS-38 and shifts valve to the lower position. Node-5 controller sends a variable zero to 24 volt output voltage to enable accessory system proportional relief valve.

Hydraulic fluid pressure at approximately 3,000 psi (204 bar) flows to cab tilt accessory valve. Hydraulic fluid exits valve and enters free-flow check valve before entering rod end of cylinder, retracting cylinder rod to lower the cab front.

Hydraulic fluid from piston end of cylinder enters free-flow check valve before entering accessory system valve and returns to tank. When cab tilt switch is released, solenoid valve HS-38 returns to center position.

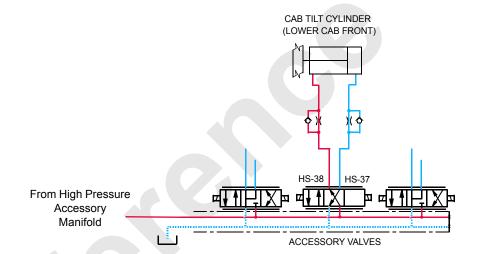


FIGURE 1-45

CRAWLER PIN CYLINDERS

Crawler Pin Cylinders

See Figure 1-46 for the following procedure.

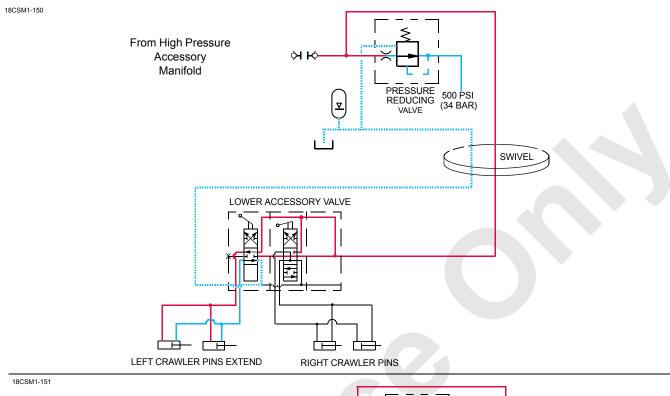
Crawler pin cylinder operation is controlled with hydraulic valve handles on the front of lowerworks and programming. Operation of both sets of pin cylinders is similar. The following description of operation is for left side set of crawler pin cylinders.

The accessory pump is the hydraulic pressure source to operate crawler pin cylinders. The accessory system proportional relief valve is controlled by node-5 controller. The high pressure accessory system pressure is monitored by a pressure sender. During normal operation the proportional relief valve is set at approximately 150 psi (10 bar). Excess supply flow from fixed displacement accessory pump is dumped through valve to tank.

When a component of accessory system is enabled, an input signal is sent to node-1 controller. Node-5 controller sends a variable 0 to 24 volt signal to accessory system proportional relief valve solenoid to increase the relief valve setting to approximately 3,000 psi (207 bar). The high pressure accessory systems pressure increases to operate selected component. Node-1 controller monitors system pressure.

Pull crawler pin handle down to engage crawler pins into crawler track frame. This shifts selected crawler pins lower accessory valve to block supply through valve and opens supply port to cylinders.

Hydraulic fluid enters piston end of cylinder, extending cylinder rod, pushing pins to secure crawler frame to lowerworks. Hydraulic fluid from rod end of crawler pin cylinder flows through lower accessory valve and is returned to tank.


When crawler pin handle is moved back to center position, the selected crawler pin valve shifts to center position and opens line to cylinders.

Push selected crawler pin handle up to disengage crawler pins from crawler track frame. This shifts selected crawler pins lower accessory valve to block supply through valve and opens supply port to cylinders.

Hydraulic fluid enters rod end of cylinders, retracting cylinder rods, pulling pins to disengage crawler frame from lowerworks. Hydraulic fluid from piston end of crawler pin cylinders flows through lower accessory valve and is returned to tank.

When crawler pin handle is moved back to center position, the selected crawler pin valve shifts to center position and opens line to cylinders.

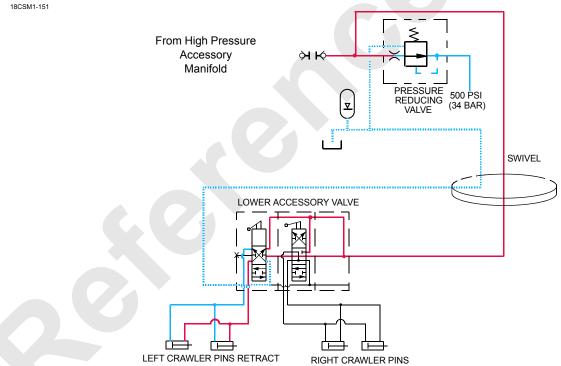


FIGURE 1-46

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 2 HYDRAULIC SYSTEM

TABLE OF CONTENTS

Hydraulic Schematics	2-1
Hydraulic System – General	2-1
Checking and Replacing Hydraulic Hoses	2-1
Hydraulic System Maintenance	
Safety	
Storing and Handling Oil	2-2
Storing and Handling Parts	
Inspecting System	
Hydraulic Tank Heater	
Replacing Filters	
Charge Filters	
Return Filters	
Replacing Desiccant Breather	
Changing Oil	
Servicing Pumps	2-10
Tightening Hydraulic Connections	2-12
Pipe Thread Connection	2-12
SAE Straight Thread Connection	2-12
ORS Connection	2-13
Split Flange Connection	
SAE Flare Connection	
Pressure Sender Replacement	2-17
Disc Brake Operational Test	2-18
Shop Procedures	2-20
Initial Oil Fill	
Initial Engine Start-Up	
Pressure Sender Calibration	2-20
Charge Pressure Check	
Control Calibration	
Hoist Pumps Pressure Test	
Travel Pressure Check	
Swing Pressure Check	
Accessory System Checks	
High Pressure Accessory System	
Low-Pressure Accessory Components	
Lower Accessory Valve	
Travel Handle and Speed Check	
Swing and Drum Speed Checks	
Hydraulic System Specifications - 18000	
Pumps	
Motors	
Hydraulic System Calibration Procedures	
Calibration Description.	
Pressure Sender Calibration	
Control Calibration	
Pump Pressure Test	
Charge Pressure Check	
Hydraulic System Adjustment Procedures	
High Pressure Adjustment	
Charge Pressure Adjustment	
Pump Neutral Adjustment	
	,

Motor Leakage Test	 	2-38						
Loop Flushing Valve Adjustment	 	2-38						
Manual Override Tests	 	2-38						
Pump or Motor Override	 	2-39						
Solenoid Valve Override	 	2-39						
Counterbalance Valves Adjustment	 	2-40						
Hydraulic Tank Level Sensor Calibration .	 	2-43						
Empty Calibration	 	2-43						
Full Cold Calibration								2-43

SECTION 2 HYDRAULIC SYSTEM

HYDRAULIC SCHEMATICS

Hydraulic schematics are attached at the end of this section.

HYDRAULIC SYSTEM - GENERAL

This section contains hydraulic system maintenance, adjustment, calibration, and test procedures for the hydraulic system and related components on the Model 18000.

Experienced technicians, trained in the operation of this crane and its hydraulic system, shall perform the procedures described in this section. The technicians shall read, understand, and comply with the instructions in this section and to the display screen instructions in Section 3 of Crane Operator Manual.

Contact your Manitowoc dealer for an explanation of any procedure not fully understood.

The adjustment, calibration, and test procedures described in this section were made to the crane before it was shipped from the factory. These procedures must be performed by field personnel only when parts are replaced or when instructed by a Manitowoc dealer.

CAUTION

Do not alter hydraulic system specifications given in this section without approval of your Manitowoc dealer.

Damage to hydraulic components and improper operation of crane can occur if specifications are altered.

CHECKING AND REPLACING HYDRAULIC HOSES

Burn Hazard!

Oil in hydraulic tank may be under pressure and extremely hot.

Ensure that hydraulic hose is de-pressurized before loosening any connections.

- 1. Visually inspect all hydraulic hose assemblies every month or at 200 hours of service life for the following:
 - a. Leaks at hose fittings or in hose
 - **b.** Damaged, cut, or abraded cover
 - c. Exposed reinforcement

- d. Kinked, crushed, flattened, or twisted hose
- e. Hard, stiff, heat cracked, or charred hose
- . Blistered, soft, degraded, or loose cover
- Cracked, damaged, or badly corroded fitting
- Fitting slippage on hose
- i. Other signs of significant deterioration

If any of these conditions exist, evaluate the hose assemblies for correction or replacement.

- **2.** At the same service interval, visually inspect all other hydraulic components and valves for the following:
 - a. Leaking ports
 - **b.** Leaking valve sections or manifolds and valves installed into cylinders or onto motors
 - Damaged or missing hose clamps, guards, or shields
 - d. Excessive dirt and debris around hose assemblies

If any of these conditions exist, address them appropriately.

See Table 2-1 below for the following items.

- It is recommended that hydraulic hose assemblies operating in **Zone C** be replaced after 8,000 hours of service life.
- 4. Hydraulic hose assemblies operating in Zone A and B with high ambient temperatures and high duty circuits could see hose service life reduced by 40% to 50%. High duty circuits can include, but are not limited to hoist(s), boom lift, swing, travel, pump suction and discharge to directional valves and directional valve return to reservoir. It is recommended to replace these hoses after 4,000 to 5,000 hours of service life.

Table 2-1 Climate Zone Classification:

Zone	Classification
Α	Tropical Moist: All months average above 65°F (18°C). Latitude: 15° - 25° N & S
В	Dry or Arid: Deficient precipitation most of the year. Latitude: 20° - 35° N & S
С	Moist Mid-Latitude: Temperate with mild winters. Latitude: 30° - 50° N & S
D	Moist Mid-Latitude: Cold winters. Latitude 50° - 70° N & S
Е	Polar: Extremely cold winters and summers. Latitude: 60° - 75° N & S

5. Hydraulic hose assemblies operating in Zone D and E should expect a degrade of mechanical properties and long term exposure to these cold temperatures will negatively impact service life. It is recommended these hoses be inspected to step 1 above as service life may be more than 8,000 hours.

HYDRAULIC SYSTEM MAINTENANCE

Safety

Lower or securely block hydraulically operated attachments and loads before servicing. Do not rely on controls to support attachments or loads.

Stop engine and relieve hydraulic pressure to zero before servicing or disconnecting any part of hydraulic system. After stopping engine, operate controls in both directions to relieve pressure.

Before servicing hydraulic system, attach warning sign to engine start controls to warn other personnel not to start engine.

Do not perform hydraulic system maintenance, adjustment or repair procedures unless authorized to do so. And then, make sure all applicable instructions have been read and are thoroughly understood.

Do not alter specified pressure settings. Higher than specified pressures can cause structural or hydraulic failure. Lower than specified pressures can cause loss of control.

Never check for hydraulic leaks with hands. Oil under pressure can penetrate skin, causing serious injury. Oil escaping from a small hole can be nearly invisible. Check for leaks with a piece of cardboard or wood.

Storing and Handling Oil

- Store oil drums in clean, cool, dry location. Avoid outdoor storage.
- Store oil drums on their side and cover them to prevent water and dirt from collecting on them.
- When handling drums and transfer containers, use care to avoid damage which can cause leaks and entry of dirt or water into oil.
- Before opening a drum, carefully clean top of it. Also clean faucet or pump to remove oil from drum.
- Only use clean transfer containers.
- Do not take oil from storage until oil is needed. If oil cannot be used immediately, keep transfer container tightly covered.

Storing and Handling Parts

 Store new parts (valves, pumps, motors, hoses, tubes) in a clean, dry indoor location.

- Do not unpack parts or remove port plugs until parts are needed.
- Once unpacked, carefully inspect each part for damage that may have occurred during shipping. Remove all shipping material from ports of parts before installing them.
- Fittings, hoses, and tubes that are not equipped with shipping caps or plugs must be carefully cleaned before they are used. Flush fittings, hoses, and tubes with clean hydraulic oil. Then seal all openings until use at assembly.
- Do not use rags to plug openings. Use clean plastic shipping plugs and caps.

Inspecting System

The damaging effects of dirt, heat, air, and water in the hydraulic system can only be prevented by regular, thorough inspection of the system. The frequency of inspection depends on operating conditions and experience with the system. However, the more often the system is inspected and deficiencies corrected, the less likely the system will malfunction.

A good inspection program will include the following checks:

- **1.** Keep accurate records so future maintenance needs can be projected.
- 2. Only use approved hydraulic oil in system (see Lubrication Guide).
- **3.** Check oil level in tank daily at sight gauge (12, Figure 2-2).

NOTE: Fill tank by removing fill cap (8a, Figure 2-2) or by pumping oil through power fill coupler (8b) with owner supplied portable pump.

Do not fill tank through breather port or through top of either filter (9, <u>Figure 2-2</u>). Hydraulic system could be contaminated from unfiltered oil.

On crane Serial Number 18001082 and newer, hydraulic oil level can also be monitored on the digital display during operation (see <u>Figure 2-1</u>).

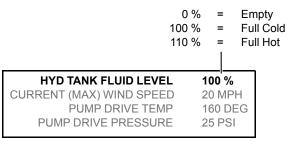


FIGURE 2-1

- **4.** Clean exterior of system often. Do not let dirt accumulate on or around any part of system.
- 5. Check for external leaks. Leaks are not only unsafe, but they also attract dirt and in some cases allow air and water to enter system. Do not return leaked oil back to hydraulic tank.

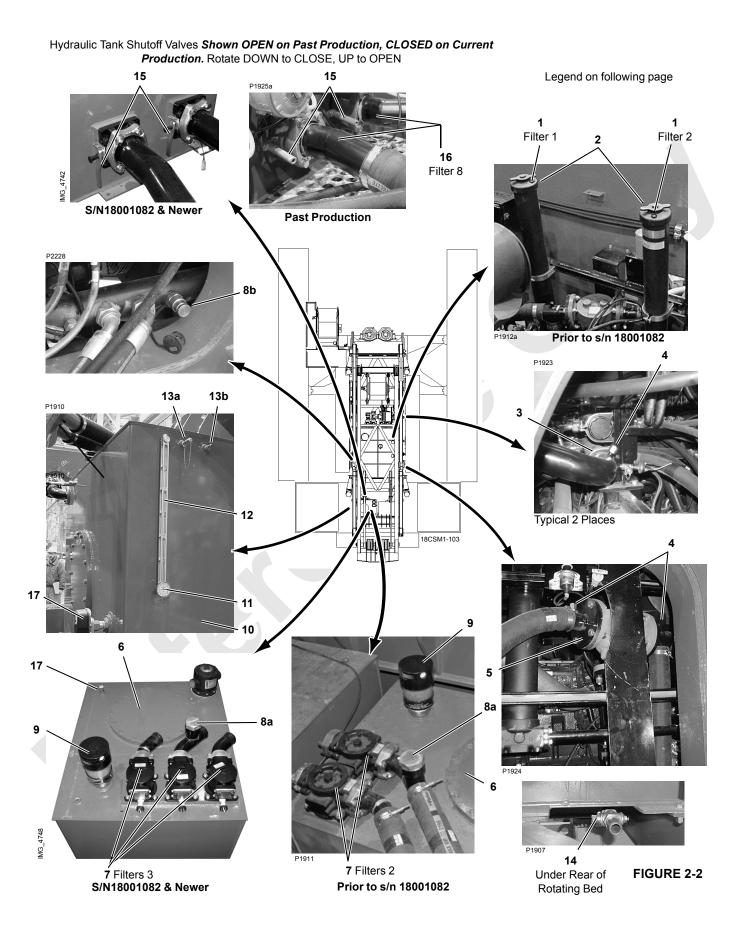
Do not to use your hands to check for leaks.

- Look for oil leaking from fittings and from between parts that are bolted together. Tighten loose fittings and attaching bolts to proper torque. Do not over tighten.
- If leakage persists at these points, replace seals or gaskets.
- Look for oil leaking from pump and motor shaft ends, from valve spool ends, and from cylinder shaft ends. Replace seal if leakage is found at any of these points.
- · Replace tubes that are cracked, kinked, or bent.
- · Replace hoses that are cracked, split, or abraded.
- Listen to pumps and motors for unusual noises. A high pitched whine or scream can indicate that air is being drawn in.

An air leak can be pinpointed by flooding inlet fitting, hose, or tube with oil. If there is an air leak, the oil will cause a noticeable reduction in noise. Correct cause for any air leak, or pump/motor will be ruined.

NOTE: A high pitched whine or scream from the pump can also indicate cavitation (pump being starved of oil). This condition is caused by the following problems:

- Collapsed or plugged suction line
- · Wrong oil (viscosity too high)
- **6.** Look for signs of overheating: peeled parts, burned and scorched oil odor, and darkening and thickening of oil. Maximum temperature of oil in tank must not exceed 180°F (82°C).
- Have hydraulic oil analyzed at regular intervals to determine condition of oil and extent of system contamination.

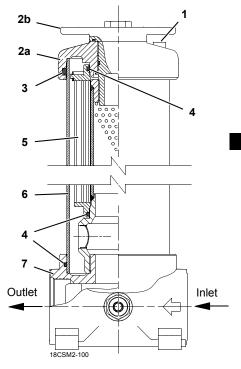

By having the oil analyzed on a regular basis, an oil change interval meeting your operating conditions can be established.

NOTE: Contact your oil supplier for the availability of oil analysis services and the steps that should be taken to obtain these services.

Hydraulic Tank Heater

On hydraulic tanks with one tank heater, replacement hydraulic tank heaters must be set prior to installation.

- 1. Remove top cover from heater by unscrewing cover.
- 2. Turn adjusting knob fully clockwise. This position is 100°F (38°C).
- 3. Re-install cover.



Legend for Figure 2-2

3	
Item	Description
1	Vent Plug (both charge filters) (NOTE 1)
2	Charge Filter (2 each) (NOTE 1 &2)
3	Charge Pressure Manifold
4	Vent Cap
5	Thermal Bypass Valve
6	Access Cover
7	Return Filter (2 or 3 each)
8a	Fill Cap
8b	Power Fill Coupler
9	Breather
10	Hydraulic Tank
11	Temperature Gauge (oil in tank)
12	Sight Gauge (oil level)
13a	Coupler
13b	Air Valve (depress valve stem to vent hydraulic tank before servicing)
14	Drain Valve
15	Tank Shutoff Valve (2 each)
16	Filter 8 (2 each, suction filter)
17	Oil Level Sensor

- **NOTE 1:** On S/N18001082 and newer Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.
- **NOTE 2:** Cranes prior to s/n 18001082.

Item	Description
1	Vent Plug
2a	Cover
2b	Handle (part of cover)
3	O-Ring with Back-Up Ring
4	O-Ring
5	Element
6	Tube
7	Head

NOTE: S/N18001082 and newer - Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.

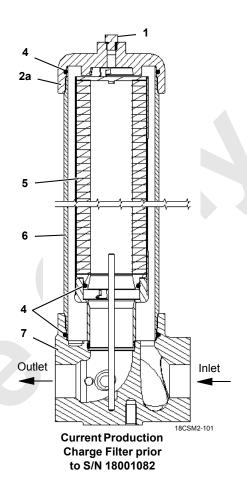


FIGURE 2-3

REPLACING FILTERS

This crane has six or seven hydraulic filters, as shown in Figure 2-2:

- Filter 1 and 2 (Prior to s/n 18001082 Charge Filter): 12-micron absolute which filter oil to all charge pumps.
- Filter 1 and 2 (s/n 18001082 and newer Return Filters):
 12-micron absolute which filter oil to all charge pumps.
- Filter 4 (2 or 3 each return): 12-micron absolute which filter all oil returning to tank.
- Filter 8 (2 each suction): 100-mesh which filter suction oil to the pumps.

The system fault alert will come on in the operator's cab when any filter plugs with dirt (see Digital Display in Section 3 of the Crane Operator Manual). The alert indicates which filter element needs replacing, as follows:

Digital Display Reading

FILTER 1 or FILTER 2 (Prior to s/n 18001082 Charge Filter. S/N 18001082 and newer Return Filters) (replace both elements)

NOTE: On S/N18001082 and newer - Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.

FILTER 4 (Return Filter) (replace all (2 or 3) elements)

FILTER 8 (Suction Filter) (clean both filters)

Must drain hydraulic to service these filters. See Changing Oil procedure in this section.

It is normal for the alert to come on at start-up when the oil is cold. If the filters are not plugged, the alert will turn off after the hydraulic oil warms up.

CAUTION

Avoid Hydraulic System Damage!

Original Equipment Manufacturers' filter elements – available from Manitowoc – must be used on this crane. Substituting with any other brand or type filter element is not allowed.

Filter elements made by other manufacturers may collapse under pressure. This action will allow unfiltered oil to be drawn into hydraulic system — pumps, motors, and valves can be destroyed.

Manitowoc will reject warranty claims for damaged hydraulic components if proper hydraulic filter elements are not used.

Charge Filters

NOTE: S/N18001082 and newer - Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.

See Figure 2-3 for the following procedure.

Replace BOTH charge filter elements when system fault alert comes on and display reads FILTER 1 or FILTER 2 prior to s/n 18001082.

On crane s/n 18001082 and newer, when system fault alert comes on and display reads FILTER 1 and FILTER 2 return filter 2 and return filter 3 elements will need replacing.

- 1. Stop engine.
- 2. Clean outside of filter tube (6) in area around cover (2a).

Burn Hazard!

Oil in hydraulic tank may be under pressure and extremely hot.

Hot oil can escape when you remove filter cover.

Relieve pressure through vent plug (1) in each filter before removing filter cover.

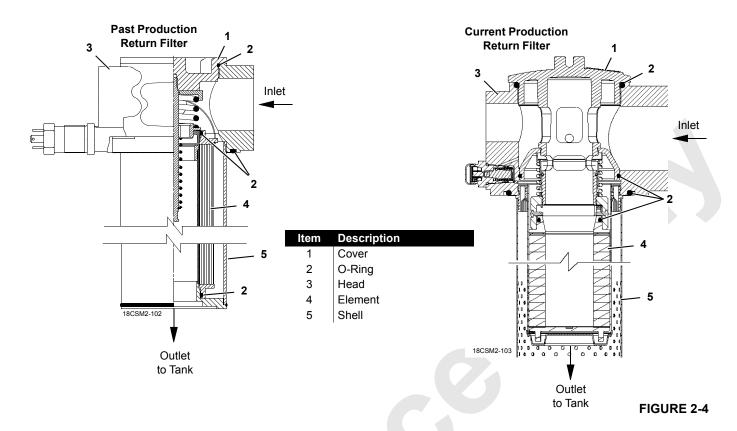
- 3. Slowly remove vent plug (1) to relieve pressure.
- 4. Remove cover (2a). Use care not to damage O-rings.

For current production filter, cover (2a) will automatically lift element (5) out of tube (6).

- **5.** For past production filter, lift element (5) out of tube (6).
- 6. Carefully inspect interior surface of element for visible contamination (flow through element is in-to-out). Normally, no dirt should show. Visible dirt or particles can be an early warning of system component failure.

7. Discard element.

Do not attempt to clean or reuse element.


Do not operate crane without charge filter elements installed prior to crane s/n 18001082.

NOTE: S/N18001082 and newer - Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.

- **8.** Lubricate element O-ring(s) (4) with clean hydraulic oil and securely install element in tube (6).
- If necessary, replace O-ring and back-up ring (3) or O-ring (4) in cover (2a) and lubricate with clean hydraulic oil
- **10.** Reinstall cover (2a) until threads bottom out. Securely *hand tighten only*.

Disregard steps <u>step 11</u> through <u>step 14</u> if you are also changing oil.

- 11. Remove vent plug (1) from filter cover (2a).
- **12.** Apply 3 5 psi owner supplied air pressure to coupler (13a, Figure 2-2) or air valve (13b) on side of hydraulic tank. Some air will leak from breather.
- **13.** Reinstall and securely tighten vent plug (1) when oil starts flowing from vent port.
- 14. Disconnect air supply.
- **15.** Start engine and allow hydraulic system to return to normal operating pressure and temperature. Check filter cover (2a) and vent plug (1) for leaks. Tighten as required to stop leaks.
- 16. Stop engine, check tank level, and refill as required.

Return Filters

See <u>Figure 2-4</u> for the following procedure.

Replace elements (quantity of 2 or 3) when system fault alert comes on and display reads FILTER 4 prior to s/n 18001082.

Replace elements (quantity of 2 or 3) when system fault alert comes on and display reads FILTER 1, FILTER 2 or FILTER 4 on s/n 18001082 and newer.

1. Stop engine.

Burn Hazard!

Oil in hydraulic tank may be under pressure and extremely hot.

Hot oil can escape when you remove either filter cover.

RELIEVE PRESSURE through air valve (13b, <u>Figure 2-2</u>) on side of tank before servicing filters. Internal hydraulic reservoir tank pressure must be equalized to atmosphere before starting oil filling or return filter replacement servicing.

2. Clean outside of filter head (3) in area around cover (1).

3. Remove cover (1). Use care not to damage O-rings.

Cover has a hexagon stud for easy removal with a wrench.

- Lift element (4) out of shell (5).
- 5. Carefully inspect interior surface of element for visible contamination (flow through element is in-to-out). Normally, no dirt should show. Visible dirt or particles can be an early warning of system component failure.
- 6. Discard element.

Do not attempt to clean or reuse element.

Do not operate crane without return filter elements installed.

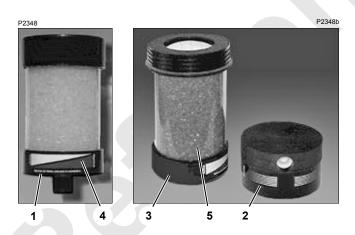
- Lubricate element O-ring(s) (2) with clean hydraulic oil and securely install element in shell.
- **8.** If necessary, replace O-ring in cover and lubricate with clean hydraulic oil.
- **9.** Reinstall cover (1) until threads bottom out. Securely *hand tighten only*.
- Start engine and allow hydraulic system to return to normal operating pressure and temperature. Check for leaks. Tighten cover if required.
- 11. Stop engine, check tank level, and refill as required.

REPLACING DESICCANT BREATHER

The following instructions apply only to current production cranes.

Burn Hazard!

Oil in hydraulic tank may be under pressure and extremely hot.


Hot oil can escape when you remove breather.

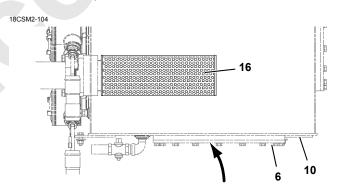
RELIEVE PRESSURE through air valve (13b, <u>Figure 2-2</u>) in side of tank before servicing desiccant breather.

See Figure 2-5 for the following procedure.

Replace cartridge (3) with a new one when desiccant beads (5) turn dark green. They are gold when new.

- 1. Unscrew breather assembly (1) from tank.
- **2.** Unscrew cap (2) from cartridge (3) and discard cartridge.
- **3.** Remove protective caps from top and bottom of new cartridge.
- **4.** Securely attach cap (2) to cartridge (3) *hand tighten only*.
- Securely attach breather assembly (1) to hydraulic tank
 — hand tighten only.

1	Breather Assembly
2	Cap (reusable)
3	Cartridge (disposable)
4	Service Indicator
5	Desiccant Beads

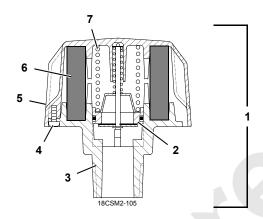

Description

CHANGING OIL

Unless otherwise specified, see <u>Figure 2-2</u> for the following procedure.

Drain and refill hydraulic system according to the recommended intervals of lubrication folio 2104, unless an alternate interval has been established through an oil analysis program.

- Operate crane until hydraulic oil is at normal operating temperature. This will help prevent impurities from settling in system.
- 2. Stop engine.
- 3. Attach a rubber hose to pipe on drain valve (14) and insert end of hose into a suitable container to catch hydraulic oil. Tank capacity to FULL COLD mark on sight gauge is 270 gallons (1 022 liters).
- 4. Open drain valve (14) and drain tank completely.
- Clean all dirt off access covers (6) in top and bottom of tank. Then remove covers. Take care to prevent dust and wind-blown dirt from entering tank while covers are off.
- Flush out any sediment inside tank.


Item	Description	
6	Access Cover (bottom)	
10	Hydraulic Tank	
16	Suction Filter 2 (2 each)	FIGURE 2

- 7. Carefully inspect each suction filter (16, Figure 2-6) for damaged or clogged holes and for sludge, gum or lacquer formation. If necessary, clean as follows:
 - **a.** Remove suction filter from inside tank. Use a wrench carefully if necessary.
 - b. Soak in clean, nonflammable solvent. Brush off outer surface, and flush from inside out. Discard if damaged.
 - c. Securely reinstall suction filter.
- Use new seals and securely fasten access covers to tank.

- **9.** If required on current production cranes, replace desiccant breather (1, Figure 2-5).
- 10. On past production cranes, either replace breather assembly (1, <u>Figure 2-7</u>) with a new one or replace breather element as follows, depending on which is more economical for you:
 - a. Remove breather assembly (1) from tank.

Use care not to lose parts inside breather when cover is removed.

- **b.** Remove three screws (4) securing cover (5) to base (3).
- c. Separate cover from base.
- d. Remove and discard old element (6).
- e. Install new element.
- f. Reassemble breather assembly (1) as shown in Figure 2-7.
- g. Fasten breather assembly to tank.

ltem	Description	
1	Breather Assembly	Past Production
2	Relief Valve	
3	Base	
4	Screw	
5	Cover	
6	Element	
7	Spring	FIGURE 2-7

- 11. Replace all filter elements (2 and 7, Figure 2-2).
- 12. Fully close drain valve (14) and remove rubber hose.
- **13.** Remove vent plug (1) from both charge filters (2) on cranes prior to s/n 18001082.

NOTE: S/N18001082 and newer - Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.

14. Remove vent cap (4) from end of both charge pressure manifolds (3).

NOTE: S/N18001082 and newer - Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.

- **15.** Remove vent cap (4) from both sides of thermal bypass valve (5).
- **16.** Fill hydraulic tank to FULL COLD level on sight gauge (12) with clean hydraulic oil (see F2104 at end of Section 9 in this manual for hydraulic oil specifications).

Fill tank through fill port (8a) or through power fill coupler (8b).

- **17.** Apply 3-5 psi owner supplied air pressure to coupler (13a) or air valve (13b) in side of hydraulic tank. Some air will leak from breather cap.
- 18. Observe vent ports:
 - a. Securely install vent plug (1) when oil starts flowing from vent port in each charge filter (2) on cranes prior to s/n 18001082.

NOTE: S/N18001082 and newer - Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.

- b. Securely install vent caps (4) when oil starts flowing from vent port in each charge pressure manifold (3) and from cooler lines at thermal bypass valve (5).
- 19. Disconnect air supply.
- 20. Check tank level and refill as required.
- **21.** Start engine and allow hydraulic system to return to normal operating pressure and temperature. Check for leaks and tighten parts as required.
- 22. Stop engine, check tank level, and refill as required.

NOTE: If the hydraulic system was extremely dirty (gum or lacquer formation on parts indicated by erratic, jerky, or sluggish operation) repeat Changing Oil procedure after 48 hours of operation.

SERVICING PUMPS

It is not necessary to drain the hydraulic tank when servicing the hydraulic pumps. To service the pumps, close shut-off valves (15, Figure 2-2) in the pump suction lines.

Open the valves prior to starting the engine after servicing the pumps.

CAUTION

Avoid Damage to Pumps!

Open hydraulic tank shut-off valves before starting engine. Failing to perform this step will result in damage to pumps from cavitation.

THIS PAGE INTENTIONALLY LEFT BLANK

TIGHTENING HYDRAULIC CONNECTIONS

- Make sure fittings and O-rings being used are proper size and style.
- Flush sealing surfaces with clean hydraulic oil to remove any dirt.
- Carefully inspect threads and sealing surfaces for nicks, gouges, and other damage. Do not use damaged parts; they will leak.
- Carefully inspect O-rings for cuts and other damage. Do not use damaged O-rings: they will leak.
- · Always lubricate O-rings when assembling on fittings.
- Be careful not to cut O-rings when assembling them to fittings. Use thimble as shown in <u>Figure 2-8</u> when assembling O-ring over threads.

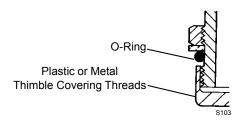


FIGURE 2-8

Pipe Thread Connection

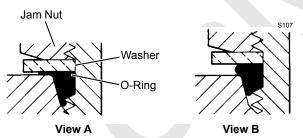
 Apply sealant (Loctite 92 or equivalent) to male threads, never to female threads. Do not apply sealant to first two male threads.

CAUTION

Hydraulic System Damage!

Do not use FTE-fluorocarbon tape to seal threads; pieces of tape will enter hydraulic system and cause damage.

Tighten fittings about 4-1/2 turns by hand and then 3 additional turns with a wrench.

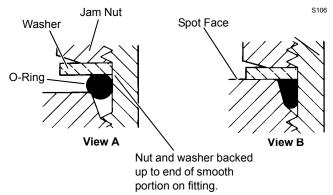

Table 2-2 Pipe Thread Leakages

Causes	Cures
Fitting loose.	Tighten.
Fitting too tight causing thread distortion.	Replace damaged parts.
Threads on fitting/port wrong size.	Use proper size threads.
Threads dirty, galled or nicked.	Clean or replace parts.
Straight thread used instead of tapered thread.	Use proper type and size thread.
Threads expanded from heat.	Tighten when hot.
Fitting loosened by vibration.	Retighten.

SAE Straight Thread Connection

This type connection leaks most often because the jam nut and washer are not backed up before assembly.

When the jam nut and washer are not backed up, there is not enough room for the O-ring when the squeeze takes place and the washer cannot seat properly as shown in Figure 2-9, View A. The compressed rubber between the washer and the spot face will cold flow out of compression, causing the fitting to loosen and leak as shown in Figure 2-9, View B.


When jam nut and washer are not backed up, there is not enough room for O-ring when squeeze takes place.

Washer cannot seat properly on spot face. Compressed rubber between washer and spot face will cold flow out of compression, causing fitting to loosen and leak.

FIGURE 2-9

Tighten SAE straight thread connections as follows:

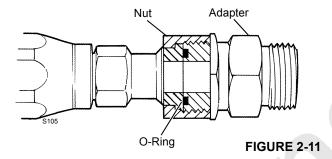
1. Back up jam nut and washer to end of smooth portion on fitting as shown in Figure 2-10, View A.

FIGURE 2-10

- 2. Lubricate O-ring with clean oil, this is very important.
- Thread fitting into port until washer bottoms against spot face as shown in <u>Figure 2-10</u>, View B.

NOTE: If an elbow is being used, back it out as necessary to align it with hose.

4. Tighten jam nut. When fitting is properly installed, O-ring will completely fill seal cavity and washer will be tight against spot face as shown in Figure 2-10, View B.


Table 2-3 Straight Thread Leakage

Causes	Cures
Jam nut and washer not backed	Replace O-ring and
up at assembly, causing O-ring	tighten fitting properly.
to be pinched.	agreed manig property.
to be pinched.	
O-ring cut.	Replace.
	Dania a suitta a a a a a i a a
O-ring wrong size.	Replace with proper size.
Sealing surfaces gouged or	Repair if possible or
scratched.	replace damaged parts.
Scratched.	replace damaged parts.
Sealing surfaces dirty.	Clean and lubricate.

ORS Connection

NOTE: ORS is the registered trade mark for a face-type seal manufactured by Aeroquip Corporation.

1. Lubricate and install O-ring in adapter groove (Figure 2-11).

- 2. Lubricate threads.
- 3. Tighten nut to torque value given in Table 2-4.

Table 2-4 ORS Assembly Torque

Nut Size	Fitting	Torqu	ne
inch across flats	Size	In-Lb	N•m
5/8	-04	120 – 145	14 – 16
13/16	-06	203 – 245	23 – 28
15/16	-08	380 – 470	43 – 53
1-1/8	-10	550 – 680	62 – 77
1-3/8	-12	763 – 945	86 – 107
1-5/8	-16	1110 – 1260	125 – 142
1-7/8	-20	1500 – 1680	170 – 190

Table 2-5 ORS Leakage

Causes	Cures
Nut Loose.	Tighten to proper torque.
O-ring cut.	Replace.
O-ring wrong size.	Replace with proper size.
Sealing surfaces gouged or scratched.	Repair if possible or replace damaged parts.
Sealing surfaces dirty.	Clean and lubricate.

Split Flange Connection

1. Lubricate and install O-ring in shoulder groove (see Figure 2-12). Align shoulder with port and assemble flanges over shoulder.

NOTE: Bolts used must be grade-5 or better. Grade-5 bolt has three dashes in head.

- 2. Snug bolts in a diagonal manner (Figure 2-12) to 1/3 of torque given in Table 2-6.
- **3.** Repeat <u>step 2</u> to 2/3 of final torque. Repeat <u>step 2</u> to final torque.

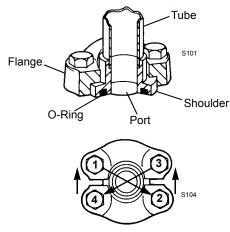
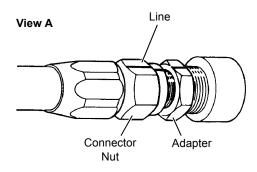


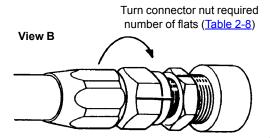
FIGURE 2-12

Table 2-6 Split Flange Assembly Torque

"A"	Flange Torque		que	
Dimension inch	Size	in-lb	N•m	
\$102	C.			
Standard Pressure Series				
1-1/2	-08	175 – 225	20 – 25	
1-7/8	-12	225 – 350	25 – 40	
2-1/16	-16	325 – 425	37 – 48	
2-5/16	-20	425 – 550	48 – 62	
2-3/4	-24	550 – 700	62 – 79	
3-1/16	-32	650 – 800	73 – 90	
3-1/8	-24	1400 – 1600	158 – 181	
3-13/16	-32	2400 – 2600	271 – 294	

"A"	Flange	Tor	que	
Dimension inch	Size	in-lb	N•m	
\$102				
High Pressure Series				
1-9/16	-08	175 – 225	20 – 25	
2	-12	300 – 400	34 – 45	
2-1/4	-16	500 – 600	57 – 68	
2-5/8	-20	750 – 900	85 – 102	
3-1/8	-24	1400 – 1600	158 – 181	
3-13/16	-32	2400 – 2600	271 – 294	

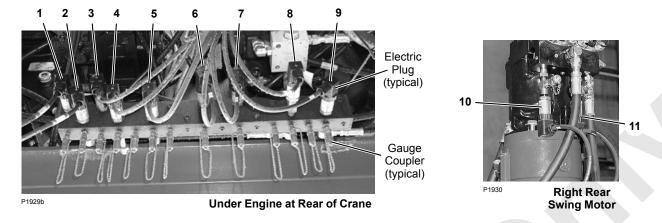

Table 2-7 Split Flange Leakage

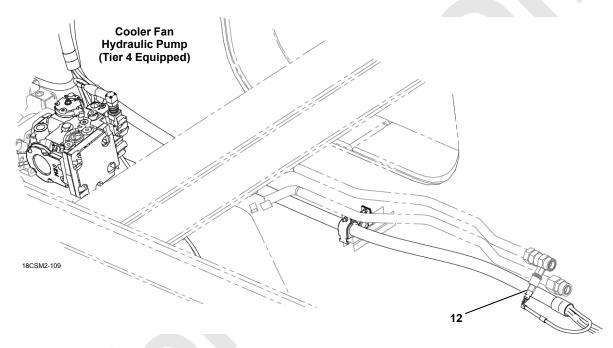

Causes	Cures		
Flanges not tight.	Tighten bolts evenly to proper torque.		
Flanges tightened unevenly causing extrusion of O-ring.	Replace O-rings. Tighten bolts evenly to proper torque.		
O-ring cut.	Replace.		
O-ring wrong size.	Replace with proper size.		
Sealing surfaces not smooth; scratched or gouged.	Repair if possible or replace parts.		
Sealing surfaces dirty.	Clean.		
Flanges keep getting loose in service.	Use SAE grade 5 bolts or better. Retighten bolts after system is hot.		

SAE Flare Connection

- 1. Tighten nut finger tight until sealing surfaces touch.
- 2. Mark a line (use felt pen or marker) on adapter and extend it onto connector nut (Figure 2-13, View A).
- **3.** Using wrenches, tighten connector nut the number of flats shown in (Figure 2-13, View B).

S108 FIGURE 2-13


4. Misalignment of marks will show how much nut has been tightened, and best of all that it has been tightened.


Table 2-8 SAE 37°Flare Tightening

Connector Nut Size inch across flats	Fitting Size	Adapter Flats to Rotate
9/16	-04	2-1/2
5/8	-05	2-1/2
11/16	-06	2
7/8	-08	2
1	-10	1-1/2 – 2
1-1/4	-12	1
1-1/2	-16	3/4 – 1
2	-20	3/4 – 1
2-1/4	-24	1/2 – 3/4

Table 2-9 SAE 37° Flare Leakage

Causes	Cures
Joint loose.	Tighten properly.
Sealing surfaces dirty.	Clean.
Sealing surfaces not smooth; scratched or gouged.	Replace faulty parts.
Sealing surfaces cracked.	Replace faulty parts.
SAE 45° parts used with SAE 37° parts.	Use only SAE 37° parts.

Hydraulic Pressure Sender Identification

Item	Description	Item	Description
1	Drum 4 (Boom Hoist)	8	High Pressure Accessory Accumulator
2	Drum 6 (Luffing Hoist)	9	Accessory System
3	Load Drums 1 and 3	10	Swing Right
4	Right Travel	11	Swing Left
5	Left Travel	12	Cooler Fan (Tier 4 Equipped)
6	Load Drums 2 and 5	13	Swing Brake (Cranes Without Swing Lock)
7	Not Used	14	Pump Drive Cooler

FIGURE 2-14

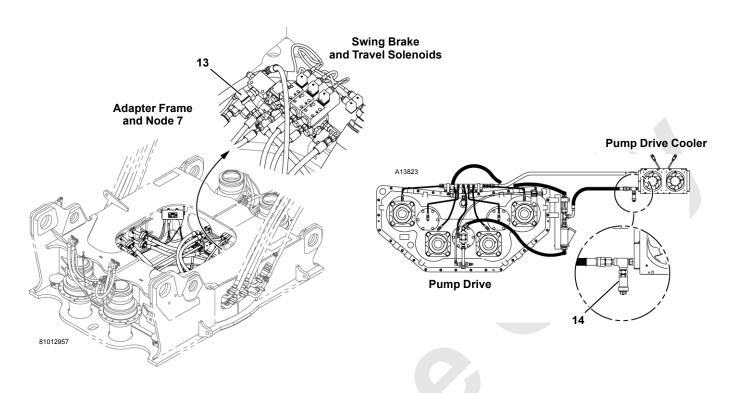


FIGURE 2-14 continued

PRESSURE SENDER REPLACEMENT

High Pressure Oil Hazard!

Do not attempt to remove a pressure sender unless following steps are performed. High pressure oil will exhaust from pressure sender ports.

See Figure 2-14 for identification of the pressure senders.

- 1. Lower all loads to ground.
- Move all control handles to off and park all crane functions.
- 3. Stop engine.
- **4.** Place a suitable container under pressure senders to catch oil leakage.

Perform steps 5 – 9 only at faulty pressure senders.

- 5. Disconnect electric plug from pressure senders.
- Slowly loosen pressure senders only enough to allow any remaining pressure to exhaust.
- 7. Remove pressure senders.

8. Install new pressure senders and connect electric cords.

Pressure senders have pipe threads. **Be sure to install thread sealant.**

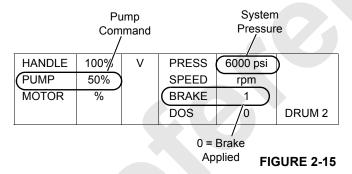
- 9. Bleed pressure senders (all except swing) as follows:
 - a. Connect bleed lines equipped with shut-off valves to couplers on pressure sender manifold. Open shutoff valves. Use a suitable container to catch oil flow.
 - **b.** With all control handles off, start engine and allow it to idle at 1,050-1,150 rpm.
 - **c.** Observe oil flowing from bleed lines.
 - **d.** Close shut-off valves when clear oil flows from bleed lines (no air bubbles in oil).
 - e. Stop engine.
 - f. Remove bleed lines from couplers at pressure senders.
- **10.** Calibrate pressure senders (see procedure in this section).

DISC BRAKE OPERATIONAL TEST

There is no physical way to check the disc brakes for travel, boom hoist, load drums, and swing. Therefore, an operational test of each brake must be performed weekly. Figure 2-16 shows the brake and brake solenoid valve locations.

NOTE: For all pumps except swing, system pressure is preset at 6,000 psi (413 bar). For swing pump, system pressure is preset at 5,000 psi (345 bar).

Electrical plugs at brake solenoid valves must be disconnected to stall crane functions during test.


- 1. Start engine and place throttle in low idle 1,050 rpm.
- 2. Select and confirm STANDARD mode.

NOTE: For load drums, make sure crane is in full power mode (free-fall OFF) so disc brakes remain applied.

For swing, set swing torque for 100%.

- Disconnect electrical plug for brake being checked (<u>Figure 2-16</u>).
- Place park brake in off position for function being checked.
- Access diagnostic screen (<u>Figure 2-15</u>) for function being checked – DRUM, BOOM HOIST, SWING, or TRAVEL.

Monitor system PRESS (pressure) and PUMP command while moving control handles.

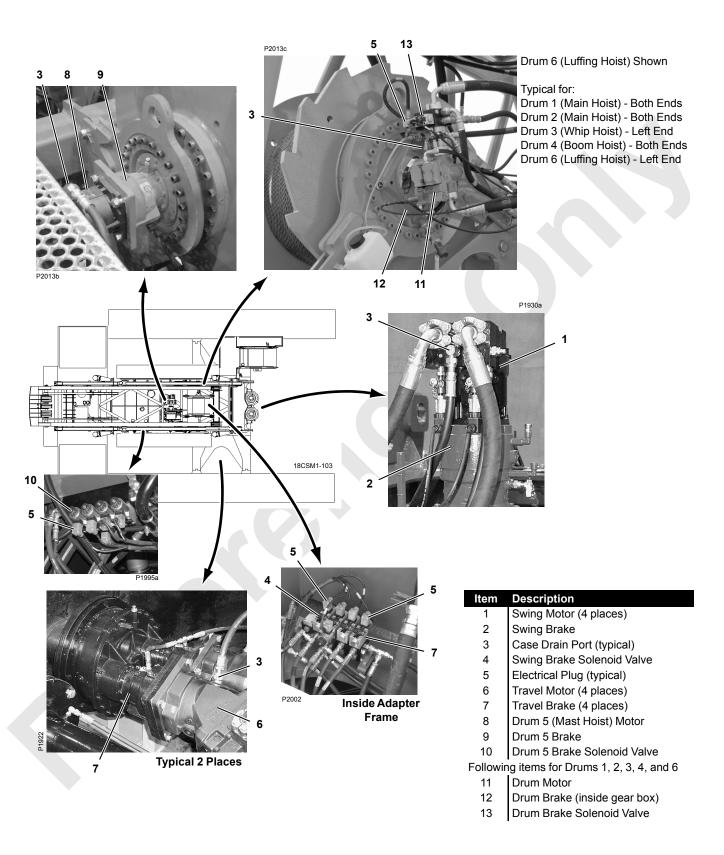
- **6.** Slowly move handle for function being checked. Specified system pressure must be reached before 50% pump command is reached and *brake must not slip*.
- 7. Repeat steps 3 5 for each function.

CAUTION

Overheating Hazard!

Do not hold any function on stall for more than 5 seconds. Damage from overheating can occur to system components.

WARNING


Falling Load/Moving Crane Hazard!

If a disc brake slips when operational test is performed, repair or replace it before placing crane back into service. Loads could fall or crane could move if brakes are not operating properly.

Refer to gear box manufacturer's manual for disc brake repair instructions.

- **8.** Reconnect electrical plugs at all brake solenoid valves at completion of operational test.
- **9.** If disc brakes were repaired or replaced, retest brakes before operating with a load.

FIGURE 2-16

SHOP PROCEDURES

CAUTION

Equipment Damage!

Incorrectly installed filters and fittings will damage pumps and motors.

Initial Oil Fill

- Fill all motor cases (<u>Figure 2-16</u>) with oil:
 - a. Disconnect fittings at highest case drain port (3) in each motor.
 - b. Fill each motor case to level of case drain port. Use new hydraulic oil which has been filtered through a 10-micron filter.
 - c. Reconnect fittings.
- Open vent ports:
 - **a.** Remove vent plugs (1, Figure 2-2) from top of both charge filters (2) on cranes prior to s/n 18001082.

NOTE: S/N18001082 and newer - Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.

- **b.** Remove vent cap (4, Figure 2-2) from right end of charge pressure manifold (3).
- **c.** Remove vent caps (4, <u>Figure 2-2</u>) at thermal bypass valve (5).
- **3.** Make sure both hydraulic tank shutoff valves (15, Figure 2-2) are fully opened.
- 4. At engine, engage engine clutch (Figure 2-17).

18CSM2-108

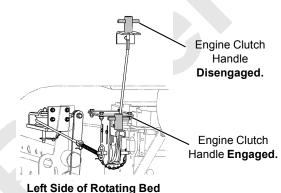


FIGURE 2-17

 Fill hydraulic tank with clean hydraulic oil to FULL HOT level mark on sight gauge (12, <u>Figure 2-2</u>).

Fill tank through fill port (8a, <u>Figure 2-2</u>) or through power fill coupler (8b).

- 6. If used, securely reinstall fill cap (8a).
- Apply 3-5 psi owner supplied air pressure to coupler (13a, Figure 2-2) or to air valve (13b) in side of hydraulic tank

Breather allows 3 psi pressure to remain in tank to force oil into system.

8. Air pressure forces oil from tank to charge filters. As suction lines are filling, monitor vent port at top of charge filters on cranes prior to s/n 18001082. (2, Figure 2-2). When clear oil appears, install vent plugs (1).

NOTE: S/N18001082 and newer - Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.

- Monitor vent ports in end of each charge pressure manifold (3, <u>Figure 2-2</u>). Install vent caps (4) when clear oil appears.
- **10.** Monitor vent ports at thermal bypass valve (5, Figure 2-2). Install vent caps (4) when clear oil appears.

Initial Engine Start-Up

Select and confirm SETUP mode.

WARNING

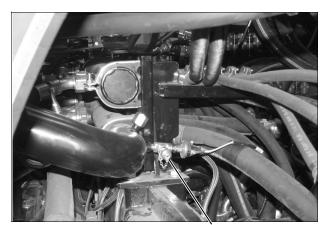
Personal Injury Hazard!

With engine running, crane components can operate unexpectedly while system pressures are checked. Disconnect power to brake valves before beginning adjustments.

Disconnect electrical connectors (DIN plugs) at all brake solenoid valves shown in <u>Figure 2-16</u>. Reconnect electrical connectors (DIN plugs) after all hydraulic system checks are completed.

Pressure Sender Calibration

Calibrate the pressure senders as instructed in this section.


Charge Pressure Check

Perform charge pressure check as instructed in this section.

- **1.** Attach a 0-600 psi (0-41 bar) gauge coupler on charge pressure manifold (Figure 2-18).
- 2. Start engine and run at low idle (1,050 rpm).
- 3. At diagnostic screens, scroll to each system in order:
 - Drum 1 (Main Hoist 1)
 - Drum 2 (Main Hoist 2)
 - Drum 3 (Whip Line Hoist)

- Drum 4 (Boom Hoist)
- Drum 5 (Mast Hoist)
- Drum 6 (Luffing Jib Hoist)
- · Swing (left and right)
- Travel (left and right)

Opening in Right Side of Rotating Bed

Connect Charge Pressure Gauge Here

FIGURE 2-18

- **4.** Each system must show **some** charge pressure within 30 seconds of starting engine.
- **5.** Observe gauge pressure at test port (<u>Figure 2-18</u>). Pressure must be between 75-100 psi (5-7 bar).
- 6. Stop engine.
- 7. Contact Engineering Department if any pump fails test.
- 8. Remove gauge from test port (Figure 2-18).

Control Calibration

Calibrate the pump controls as instructed in this section.

Hoist Pumps Pressure Test

Test the pressure of the hoist pumps as instructed in this section.

Travel Pressure Check

- With brake on, move crawler handles in both directions to stroke travel motors.
- 2. Travel screen pressure should be 4,500 psi (303 bar).
- Travel brakes must hold without slipping.

Swing Pressure Check

- **1.** With brake on, move swing handle in both directions to stroke swing motor.
- 2. Swing screen pressure should be 4,500 psi (303 bar).

3. Swing brake must hold without slipping.

Accessory System Checks

High Pressure Accessory System

The accessory pumps are the source for high pressure accessories. High pressure accessories include rotating bed jacking cylinders, front and rear adapter frame pins, cab tilt cylinder, mast pin cylinders, boom hinge pin cylinders, mast raising cylinders, and rigging winch. For operating these items, select and confirm SETUP REMOTE mode.

- 1. Rotating bed jacking cylinders:
 - a. Access hand-held radio remote control.
 - b. Use jack toggles to fully extend jacks.
 - **c.** Scroll to accessory screen on diagnostic screen to verify that 3,000 psi (206 bar) is present when cylinders are extended and retracted.
 - **d.** When retracting jacks, the rotating bed must lower slowly and smoothly.
- 2. Front and rear adapter frame pin cylinders:
 - **a.** Remove locking plate to allow pin cylinders to operate.
 - **b.** Access hand-held radio remote control.
 - c. Use front or rear toggles to ENGAGE and DISENGAGE cylinders several times and remove air from system.
 - **d.** Scroll to accessory screen to verify that 3,000 psi (206 bar) is present when cylinders are engaged and disengaged.
- 3. Cab tilt cylinder:
 - Access cab tilt control on front console in operator's cab.
 - **b.** Use rocker switch to ENGAGE and DISENGAGE cylinder several times and remove air from system.
 - c. Scroll to accessory screen to verify that 3,000 psi (206 bar) is present when cylinder is engaged and disengaged.
- 4. Mast pin cylinders:
 - **a.** Remove keeper plate to allow pin cylinders to operate.
 - b. Access hand-held radio remote control.
 - **c.** Use mast pins toggle to ENGAGE and DISENGAGE cylinders several times and remove air from system.
 - d. Scroll to accessory screen to verify that 3,000 psi (206 bar) is present when cylinders are engaged and disengaged.

5. Boom hinge pin cylinders:

NOTE: Hydraulics must be connected to boom butt to operate boom hinge pin cylinders.

- **a.** Remove lock plate to allow hinge pin cylinders to operate.
- **b.** Access hand-held radio remote control.
- c. Use boom hinge pins toggle to ENGAGE and DISENGAGE cylinders several times and remove air from system.
- **d.** Scroll to accessory screen to verify that 3,000 psi (206 bar) is present when cylinders are engaged and disengaged.
- 6. Mast raising cylinders:
 - a. Access hand-held radio remote control.
 - **b.** Use mast toggle to RAISE and LOWER mast cylinders several times to remove air from system.
 - c. Scroll to accessory screen to verify that 3,000 psi (206 bar) is present when cylinders are retracted or extended.

CAUTION

Damage to Mast!

When raising mast for the first time or after maintenance of mast cylinder, raise mast slowly and check that both cylinders are raising mast evenly. Mast could twist if one cylinder is not working correctly.

7. Rigging winch motor (optional):

NOTE: Hydraulics must be connected to boom butt and boom inserts to operate rigging winch motor.

- Access hand-held radio remote control.
- **b.** Use payout and haul in toggle to PAYOUT and HAUL IN several times to remove air from system.
- **c.** Scroll to accessory screen to verify that 3,000 psi (206 bar) is present when motor is operating.

Low-Pressure Accessory Components

The swing system pressure reducing shuttle valve is the low-pressure source for the low-pressure accessories at a pressure of 350 psi (24 bar). The low-pressure accessories includes swing brake, swing lock, travel brake, and travel 2-speed.

- 1. Swing brake and swing lock:
 - a. Scroll to swing diagnostic screen.
 - **b.** With swing park brake and swing lock OFF, attempt to swing the crane by moving control handle in both directions.

c. Crane must respond and indicate on swing screen that swing park brake and swing lock are released.

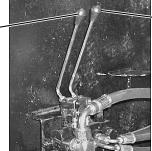
2. Travel brakes:

- a. Scroll to travel diagnostic screen.
- b. With travel park brake OFF, attempt to travel the crane by moving control handles in both directions.
- **c.** Crane must respond and indicate on travel screen that travel park brake is released.
- Travel 2-speed is checked in test area when travel speed is checked.

Lower Accessory Valve

The swing system pressure reducing valve is the low-pressure source for operating the crawler pin handles (Figure 2-19) at pressure of 350 psi (24 bar).

CAUTION


Machinery Damage!

Do not perform this test if crawlers are attached to carbody.

- **d.** With handles on front of carbody, fully extend the crawler pins if they are not already extended.
- e. Scroll to accessory screen to verify that a pressure is present when pin cylinder are extended and retracted.

Front of Carbody

Right Crawler _ Pin Handle

Left Crawler Pin Handle

FIGURE 2-19

Travel Handle and Speed Check

Verify that travel movement responds correctly to handle commands. Count the number of revolutions crawler roller rotates in one minute to determine travel speed.

NOTE: Final evaluation of travel system is completed in test area.

 Put a timing mark on crawler roller at front of crane (Figure 2-20).

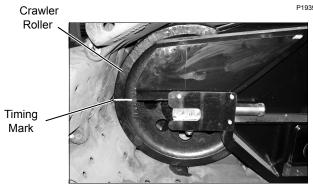


FIGURE 2-20

- 2. Start engine and set speed at high idle.
- **3.** Push both crawler control handles fully FORWARD to travel crane at full speed.
- Have an assistant count number of revolutions timing mark makes.
- **5.** Number should be 5.3 to 5.8 revolutions in one minute.
- 6. If count is not within this range, determine cause of problem and take corrective action.

Swing and Drum Speed Checks

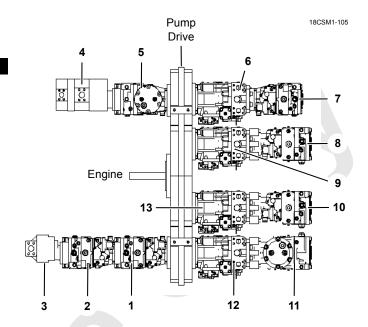
Check operating speeds for functions listed in <u>Table 2-10</u> with engine running at high idle (1,800 rpm), control handles moved fully forward and back, with no load, and no rope. Read speeds on digital display.

If proper speeds are not indicated, determine cause of problem and take corrective action.

HYDRAULIC SYSTEM SPECIFICATIONS - 18000

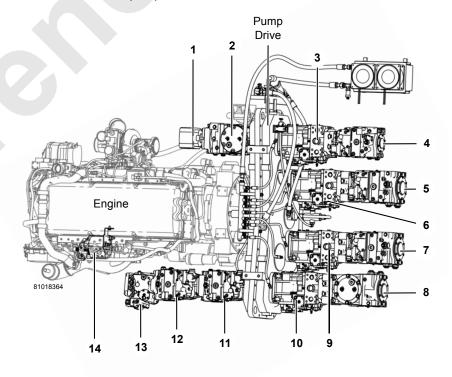
Table 2-10 Hydraulic System Specifications

Function	Direction	Pump-Motor Port Connections	System Pressure 1 ¹ psi (bar)	System Pressure 2 ² psi (bar)	Charge Pressure	Speed ³ rpm
Matallatald	Lower	Pump A to Motor A				32 to 38
Main Hoist 1	Hoist	Pump B to Motor B				36 to 40
Main Hoist 1/3 ⁴	Lower	Pump A to Motor B				32 to 38
Main Hoist 1/3	Hoist	Pump B to Motor A				36 to 40
Main Hoist 2	Hoist	Pump A to Motor B	6,090 (420)	N/A	350 (24)	36 to 40
Mail Hoist 2	Lower	Pump B to Motor A	Hoist or Lower	1477	000 (21)	32 to 38
Main Hoist 2/5 ⁵	Hoist	Pump B to Motor A				36 to 40
Main Hoist 2/5	Lower	Pump A to Motor B				32 to 38
Whip Line Hoist 3 4	Hoist	Pump B to Motor A				36 to 40
vvnip Line Hoist 3	Lower	Pump A to Motor B				32 to 38
Boom Hoist 4A	Hoist	Pump A to Motor A				41 to 45
BOOTH HOIST 4A	Lower	Pump B to Motor B		N/A	350 (24)	36 to 43
Boom Hoist 4B	Hoist	Pump B to Motor A	6,090 (420) Hoist or Lower			41 to 45
D00111 110181 4D	Lower	Pump A to Motor B				36 to 43
Mast Hoist 5 5	Hoist	Pump B to Motor A				26 to 29
Mast Hoist 5	Lower	Pump A to Motor B				23 to 28
Luffing lib Heigh C	Lower	Pump A to Motor B				32 to 38
Luffing Jib Hoist 6	Hoist	Pump B to Motor A				36 to 40
Rigging Winch	Haul In	Open Loop to Tank	3,000 (204)	N/A	N/A	85 to 90
Rigging Windi	Pay Out	Open Loop to Tank	3,000 (204)	IN/A	IN/A	65 10 90
Swing 1	Left	Pump A to Motors B & B			350 (24)	
Swilly 1	Right	Pump B to Motors A & A	6,090 (420)	N/A		
6	Left	Pump B to Motors B & B	Right or Left			1.1 to 1.2
Swing 2 ⁶	Right	Pump A to Motors A & A				
Laft Cida Tasa d	Forward	Pump B to Motors A & A	6,090 (420)			
Left Side Travel	Reverse	Pump A to Motors B & B				5.3 to 5.8
Dight Side Traval	Forward	Pump B to Motors A & A	Forward or Reverse			at Tumbler
Right Side Travel	Reverse	Pump A to Motors B & B				
Accessory Pumps 7		Open Loop to Tank	N/A	0 to 3,000 (0 to 204)	N/A	N/A


Notes	
1	Controlled by multi-function valves in each pump.
2	Controlled by crane's programmable controller.
3	Speeds based on engine at high idle, no load (no rope on drums), and handles moved fully forward or back.
4	Pump used for main hoist 1 right side or whip line hoist. Computer selects first handle moved.
5	Pump used for main hoist 2 right side or mast hoist. Computer selects first handle moved.
6	Swing 2 pump is optional
7	Accessory pumps are the source of hydraulic pressure for accessory system and high pressure accessory components. Items include swing and travel brakes, Boom hinge pin cylinders, rotating bed jacking cylinders, front and rear adapter frame pin cylinders, mast pins and raising cylinders, cab tilt cylinder, rigging winch, and crawler pin cylinders. Computer controls pump pressure depending on accessory selected.

Pumps

Pump Identification (Prior to s/n 18001082)


14	Description
Item	Description
1	Boom Hoist A (Drum 4)
2	Swing (Optional)
3	Super charge
4	Supercharge/Accessory
5	Boom Hoist B (Drum 4)
6	Main Hoist (Drums 1 and 3)
7	Swing
8	Left Travel
9	Main Hoist (Drum 2)
10	Luffing Jib Hoist (Drum 6)
11	Right Travel
12	Main Hoist (Drum 1)
13	Main Hoist (Drums 2 and 5)

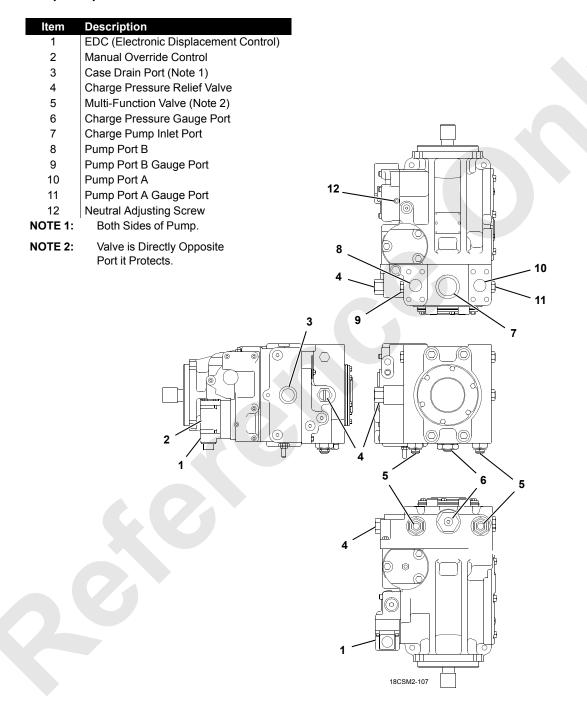
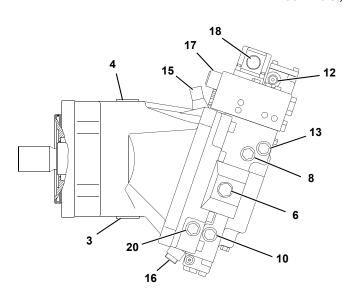
Pump Identification (S/N 18001082 & newer)

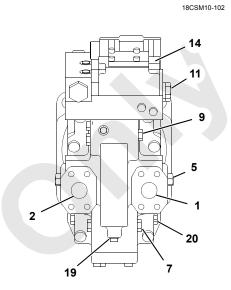
ltem	Description
1	Accessory Pump
2	Boom Hoist B Pump (Drum 4)
3	Main Hoist Pump (Drums 1 and 3)
4	Swing Pump
5	Left Travel Pump
6	Main Hoist Pump (Drum 2)
7	Luffing Jib Hoist Pump (Drum 6)
8	Right Travel Pump
9	Main Hoist Pump (Drum 2 and 5)
10	Main Hoist Pump (Drum 1)
11	Boom Hoist A Pump (Drum 4)
12	Swing (Optional)
13	Cooler Fan Pump (Tier 4 Equipped)
14	Accessory Pump (Motor Drive)

NOTE: S/N18001082 and newer - Supercharge pump and charge filters 1 and 2 replaced with accessory pump and additional return filter.

FIGURE 2-21

Pump Components


FIGURE 2-21 continued

Motors

Boom Hoist, Load Drums, and Travel Motor

Item	Port	Description	Item	Port	Description
1	Α	Main System Pressure	11	M7	Control Pressure (Maximum Displacement)
2	В	Main System Pressure	12	M8	Control Pressure (Minimum Displacement)
3	L1	Case Pressure (Drain)	13	M9	Servo Pressure Supply
4	L2	Case Pressure (Drain)	14	X1	External PCP Supply Pressure
5	M1	Gauge Port A	15		Minimum Displacement Limiter
6	M2	Gauge Port B	16		Charge Pressure Relief Valve
7	М3	Servo Pressure Gauge Port (Maximum Displacement)	17		Pressure Compensator Adjuster
8	M4	Servo Pressure Gauge Port (Minimum Displacement)	18		Manual Override
9	M5	Servo Pressure Supply	19		Control Start Setting
10	M6	Charge Pressure Gauge Port	20		Loop Flushing Shuttle Valve

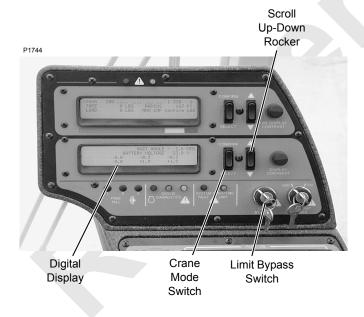
FIGURE 2-22

HYDRAULIC SYSTEM CALIBRATION PROCEDURES

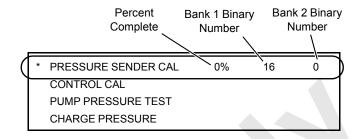
Calibration Description

To ensure proper operation of the crane functions, the following items must be calibrated or tested at the intervals specified in this section:

- · Pressure Senders
- · Controls (pump centers)
- Pump Pressure
- · Charge Pressure


See <u>Figure 2-23</u> for identification of the controls used for calibration and testing.

Moving Load Hazard!


With engine running, crane functions (drums, boom hoist, swing, travel) can operate unexpectedly while system components are being calibrated or tested.

To prevent crane functions from moving, turn PARK ON for all crane functions before you perform calibration or testing procedures.

FIGURE 2-23

Pressure Sender Calibration

Binary No.	Pressure Sender (Bank 1)	Binary No.	Pressure Sender (Bank 2)
1	Drum 1/3 (Main Hoist)	1	Swing Left
2	Not Used	2	Swing Right
4	Drum 2/5 (Main Hoist)	4	High Pressure Accessory Accumulator
8	Accessory System		
16	Drum 4 (Boom Hoist)		
32	Drum 6 (Luffing Hoist)		
64	Left Track		
128	Right Track		

FIGURE 2-24

See Figure 2-23 and 2-24 for the following procedure.

Pressure sender line of calibration screen indicates if each system's pressure sender null (0) is within 0.65-1.35 volts.

Pressure senders must be calibrated at the following intervals:

- When a new controller node is installed
- When a pump is replaced
- When a pump control (EDC or PCP) is replaced
- When a pressure sender is replaced
- When displayed pressure is not correct

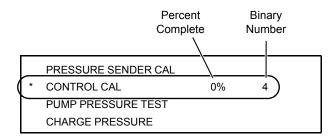
Be aware that if there is any residual pressure in the system during the calibration process, the display pressure reading in the cab may not reflect actual system pressure. See Note on page 2-29.

Every 6 months

To perform pressure sender calibration, proceed as follows:

- 1. Stop engine and turn ignition switch to RUN position.
- Access calibration screen as follows:
 - **a.** Select and confirm SETUP mode to activate calibration program.
 - b. Turn LIMIT BYPASS switch clockwise and hold.
 - c. SCROLL UP at least one screen.

- **d.** Continue to scroll up or down until calibration screen appears.
- **e.** Press bottom of CRANE MODE switch until (*) appears next to PRESSURE SENDER CAL.
- f. Then press top end of CRANE MODE switch to CONFIRM. Calibration will start.
- **g.** When calibration starts, percent (%) of completion is displayed on screen.
- **h.** When calibration stops, check bank 1 and bank 2 binary numbers:
 - If 0 appears, all pressure senders have passed calibration.
 - If any number other than 0 appears in either bank, use <u>Table 2-11</u> to determine which senders have failed calibration.
 - Each pressure sender is assigned a number in the binary system (power of two). After running the calibration procedure, outputs that are ON (failed) for any sender are added together. To identify the failed senders, find the binary number displayed on the screen in the first column of <u>Table 2-11</u>. All shaded boxes to the right of the number indicate senders that failed calibration.
 - Refer to <u>Figure 2-24</u> to identify the pressure senders.


 Troubleshoot the particular system to determine the cause of the fault.

NOTE: The cause of a failed calibration or faulty display pressure reading in the cab may not be the pressure sender. The cause of the fault could be trapped air or hydraulic pressure in the system.

Before replacing a pressure sender, do the following:

- Perform pressure sender calibration steps.
- Attach an accurate hydraulic pressure gauge to the quick-coupler at the suspect pressure transducer.
- If pressure appears on the gauge, bleed the corresponding system so the gauge reads zero pressure.
- Repeat calibration steps and check pressure on the display in the cab with the engine running at idle — the display reading and the gauge reading should be the same.
- Before replacing a pressure sender, check the signal voltage at the sender. It should be 1.0 volt against ground at 0 psi.
- j. Proceed to next procedure, or exit calibration screen by pressing bottom of CRANE MODE switch. Cursor (*) will disappear from screen.

Control Calibration

Binary No.	Pressure Sender
1	Main Hoist 1
2	Main Hoist 2
4	Boom Hoist
8	Swing Left
16	Swing Right
32	Luffing Hoist

FIGURE 2-25

See Figure 2-23 and 2-25 for the following procedure.

The control line of the calibration screen indicates whether the pump centers are within the allowable range of each pump's Electric Displacement Control (EDC). The allowable range is 5-25% pump command signal for the hoist pumps, and 2.5-20% in each direction for the swing pump.

The controls must be calibrated at the following intervals:

- When a new controller node is installed
- · When a pump is replaced
- When a pump control (EDC or PCP) is replaced
- When there is a noticeable time increase to engage a crane function when handle is moved from off
- Every 6 months

To perform control system calibration, proceed as follows:

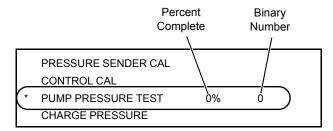
- **1.** Turn PARK ON for all crane functions (drums, boom hoist, swing, travel).
- Start engine. It is normal for yellow operating limits light to come on during this procedure.
- 3. Access calibration screen as follows:
 - Select and confirm SETUP mode to activate calibration program.
 - b. Turn LIMIT BYPASS switch clockwise and hold.
 - c. SCROLL UP at least one screen.
 - **d.** Continue to scroll up or down until calibration screen appears.

- e. Press bottom of CRANE MODE switch until (*) appears next to CONTROL CAL.
- f. Increase engine speed to HIGH IDLE.

Engine must be running at **high idle** before calibration will start.

Calibration will stop if engine speed is decreased during calibration.

- **g.** Press top end of CRANE MODE switch to CONFIRM. Calibration will start.
- **h.** When calibration starts, percent (%) of completion is displayed on screen.
- i. When calibration stops, check binary number:
 - If 0 appears, all controls have passed calibration.
 - If any number other than 0 appears, use <u>Table 2-11</u> to determine which controls have failed calibration.


Each control is assigned a number in the binary system (power of two). After running the calibration procedure, outputs that are ON (failed) for any control are added together. To identify the failed controls, find the binary number displayed on the screen in the first column of Table 2-11. All shaded boxes to the right of the number indicate controls that failed calibration.

Refer to Figure 2-25 to identify the controls.

- Troubleshoot the particular system to determine the cause of the fault.
- **k.** Proceed to next procedure, or exit calibration screen by pressing bottom of CRANE MODE switch. Cursor (*) will disappear from screen.

Pump Pressure Test

Binary No.	Pressure Sender
1	Main Hoist 1
2	Main Hoist 2
4	Boom Hoist
8	Luffing Hoist

FIGURE 2-26

See Figure 2-23 and 2-26 for the following procedure.

The pump pressure line of the calibration screen cycles through the hoist pumps to make sure each pump is capable of producing 6,000 psi (414 bar).

CAUTION: Only perform this high pressure test when absolutely necessary and by a qualified service technician.

This test generates maximum pressure in the main hydraulic circuits. Defective brakes may allow unintended motion during test. Move the crane to an area where such motion is not a hazard.

Use a signal person to monitor functions operator cannot see.

Be prepared to stop engine if unintended motion occurs.

To perform pump pressure test, proceed as follows:

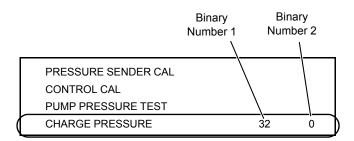
- **1.** Turn PARK ON for all crane functions (drums, boom hoist, swing, travel).
- **2.** Start engine. It is normal for yellow operating limits light to come on during this procedure.
- 3. Access calibration screen shown below as follows:
 - **a.** Select and confirm SETUP mode to activate calibration program.
 - b. Turn LIMIT BYPASS switch clockwise and hold.
 - c. SCROLL UP at least one screen.

- **d.** Continue to scroll up or down until calibration screen appears.
- e. Press bottom of CRANE MODE switch until (*) appears next to PRESSURE TEST.
- f. Increase engine speed to:
 - HIGH IDLE, field personnel
 - 1,350 rpm, MCC assembly personnel when checking out a new crane

Engine must be running faster than **750 rpm** before calibration will start.

Calibration will stop if engine speed is decreased during calibration.

- g. Press top end of CRANE MODE switch to CONFIRM. Testing will start.
- h. When testing starts, percent (%) of completion is displayed on screen.
- i. When testing stops, check binary number:
 - If 0 appears, all pumps have passed the test.
 - If any number other than 0 appears, use <u>Table</u>


 <u>2-11</u> to determine which pumps have failed the test.

Each pump is assigned a number in the binary system (power of two). After running the pressure test, outputs that are ON (failed) for any pump are added together. To identify the failed pumps, find the binary number displayed on the screen in the first column of <u>Table 2-11</u>. All shaded boxes to the right of the number indicate pumps that failed testing.

Refer to Figure 2-26 to identify the pumps.

- Troubleshoot the particular system to determine the cause of the fault.
- **k.** Proceed to next procedure, or exit calibration screen by pressing bottom of CRANE MODE switch. Cursor (*) will disappear from screen.

Charge Pressure Check

Binary No.	Pressure Sender (Bank 1)	Binary No.	Pressure Sender (Bank 2)
1	Drum 1/3 (Main Hoist)	1	Swing Left
2	Not Used	2	Swing Right
4	Drum 2/5 (Main Hoist)	4	High Pressure Accessory Accumulator
8	Accessory System		
16	Drum 4 (Boom Hoist)		
32	Drum 6 (Luffing Hoist)		
64	Left Track		
128	Right Track		

FIGURE 2-27

See Figure 2-23 and 2-27 for the following procedure.

The charge pressure line of the calibration screen indicates if any charge pump is not within 275-400 psi (19-27 bar).

Charge pressure should be checked at the following intervals:

When a new controller node is installed

- When a pump is replaced
- When a pump control (EDC or PCP) is replaced
- · Every 6 months

To check charge pressure, proceed as follows:

- 1. Start and run engine at low idle
- **2.** Access calibration screen shown below as follows:
 - a. Turn LIMIT BYPASS switch clockwise and hold.
 - b. SCROLL UP at least one screen.
 - **c.** Continue to scroll up or down until calibration screen appears.
 - **d.** The fourth line of the screen indicates charge pressure:
 - If 0 appears, all charge pumps are okay.
 - If any number other than 0 appears, use <u>Table</u>
 2-11 to determine which pumps have failed the test.

Each pump is assigned a number in the binary system. Outputs that are ON (failed) for any pump, are added together. To identify the failed pumps, find the binary number displayed on the screen in the first column of Table 2-11. All shaded boxes to the right of the number indicate pumps that have failed. Troubleshoot the particular system to determine the cause of the fault.

e. Proceed to next procedure, or exit calibration screen by pressing bottom of CRANE MODE switch. Cursor (*) will disappear from screen.

THIS PAGE INTENTIONALLY LEFT BLANK

Table 2-11 Binary System

	_	2	4	8	16	32	64	128	256
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25									
26									
27									
28									
29									
30									
31									
32									
33									
34							7		
35									
36									
37									
38									
39									
40									
41									
42									
43									

	~	2	4	8	16	32	64	128	256
44									
45									
46									
47									
48									
49									
50									
51									
52									
53									
54									
55									
56									
57									
58									
59									
60									
61									
62									
63									
64									
65									
66	_								
67									
68									
69									
70									
71									
72									
73	_								
74	_								
75	_								
76									
77									
78									
79	_				L				
80									
81									
82	_								
83			L						
84	_								
85									
86									

	_	2	4	8	16	32	64	128	256
87									
88									
89									
90									
91									
92									
93									
94									
95									
96									
97			K						
98									
99									
100									
101									
102									
103									
104									
105									
106									
107									
108									
109									
110									
111									
112									
113									
114									
115									
116									
117									
118									
119									
120									
121									
122									
123									
124									
125									
126									
127									
128									
129									

Table 2-11 (continued) Binary System

	_	2	4	∞	16	32	64	128	256
130									
131									
132									
133									
134									
135									
136									
137									
138									
139									
140									
141									
142									
143									
144									
145									
146									
147									
148									
149									
150									
151									
152									
153									
154									
155									
156									
157									
158									
159									
160									
161									
162									
163									
164									
165									
166									
167									
168									
169									
170									
171									
172									

	~	2	4	8	16	32	64	128	256
173									
174									
175									
176									
177									
178									
179									
180									
181									
182									
183									
184									
185									
186									
187									
188									
189									
190									
191									
192									
193									
194									
195				\					
196	4								
197	1								
198									
199									
200	4								
201									
202									
203									
204									
206									
207									
208									
209									
210									
211									
212									
213									
214									
215									
5				I		<u> </u>			<u> </u>

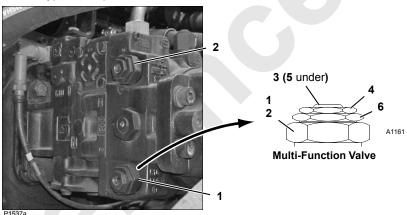
	_	2	4	8	16	32	64	128	256
216									
217									
218									
219									
220									
221						\vee			1
222									
223									
224									7
225									
226									
227									
228									
229									
230									
231									
232									
233									
234									
235									
236									
237									
238									
239									
240									
241									
242									
243									
244									
245									
246									
247									
248									
249									
250									
251									
252									
253									
254									
255									

HYDRAULIC SYSTEM ADJUSTMENT PROCEDURES

High Pressure Adjustment

The following adjustment is only required when a system fails the High Pressure Test described in this section.

Unless otherwise specified, see <u>Figure 2-28</u> for the following procedure.


- Scroll to system component screen for corresponding function.
- **2.** Disconnect electrical (DIN) connector from corresponding brake solenoid valve (see Figure 2-16).
- With engine running at low idle, slowly move desired control handle in either direction.
- **4.** Do not demand any more than 20% handle command.
- Pressure on screen should indicate pressure specified in <u>Table 2-10</u>.

- **6.** If proper pressure is not indicated, adjust the corresponding multi-function valve:
 - **a.** Remove protective cap (3) from multi-function valve (1 or 2). See <u>Table 2-10</u> and <u>Figure 2-21</u> for pump port identification.
 - b. Loosen lock nut (4).

DO NOT tamper with bypass hex (6). See pump manufacturer's instructions.

- **c.** Using an internal hex wrench, adjust multi-function valve adjusting screw (5).
 - Turn IN to INCREASE pressure.
 - Turn OUT to DECREASE pressure.
- 7. Repeat steps until specified pressure is indicated.
- **8.** Hold adjusting screw (5) in position and securely tighten lock nut (4).
- Install protective cap (3).
- Reconnect electrical (DIN) connector to corresponding brake solenoid valve (see <u>Figure 2-16</u>).

Typical Pump Installation

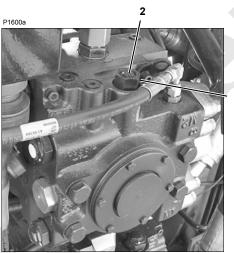
Item	Description
1	Port A Multi-Function Valve
2	Port B Multi-Function Valve
3	Protective Cap
4	Lock Nut
5	Adjusting Screw

Bypass Hex

W	/re	nc	h S	Siz	e

Pump Size	Lock Nut Hex Size	Internal Hex Size
Series 042 -100 Units	19 mm	5 mm
	13 mm	4 mm
Series 130 Units	or	or
	24 mm	8 mm

FIGURE 2-28


Charge Pressure Adjustment

The following adjustment is only required when a system fails the Charge Pressure Test described in this section.

- Scroll to system display screen for corresponding function.
- 2. Start and run engine at high idle. With function in neutral, system pressure on diagnostic screen should read 320 to 370 psi (22 to 25,5 bar).
- If specified pressure is not indicated, stop engine and connect an accurate 0 to 1,000 psi (0 to 69 bar) hydraulic pressure gauge to coupler at corresponding pressure sender.
- **4.** Repeat step <u>2</u>, if specified pressure is still not indicated:
 - Do a Pressure Sender Test as instructed in this section. Replace faulty pressure sender if needed.
 - Do a Control Calibration as instructed in this section.

If specified pressure is still not indicated:

- If pressure is too high, check that pump neutral is adjusted properly. If pressure is still high, adjust charge pressure relief valve.
- If pressure is too high, adjust charge pressure relief valve. If you cannot raise charge pressure, excessive system leakage is indicated.

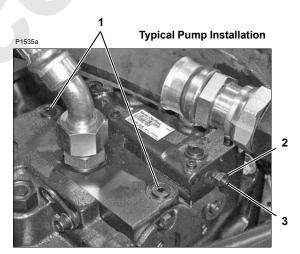
Typical Pump Installation

Item	Description	Hex Wrench Size
1	Lock Nut	1/2 in (12,7 mm)
2	Adjusting Plug Series 030-100	1-1/16 in (27,0 mm)
2	Adjusting Plug Series 030-100	1-5/8 in (41,28 mm)

FIGURE 2-29

5. To adjust charge pressure:

See Figure 2-29 for the following procedure.


- a. Loosen lock nut (1).
- b. Adjust adjusting plug (2).
 - Turn in to increase pressure.
 - Turn out to decrease pressure.
- c. Once specified pressure is indicated, hold adjusting plug (2) in position and securely tighten lock nut (1).
- 6. Stop engine and remove gauge from gauge port.

Pump Neutral Adjustment

See Figure 2-30 for the following procedure.

To adjust pump neutral:

- 1. Park all crane functions and stop engine.
- Disconnect electrical (DIN) connector from pump EDC (see Figure 2-32).
- 3. Install an accurate 0 to 1,000 psi (0 to 69 bar) hydraulic pressure gauge in each servo gauge port (1).
- 4. Start and run engine at high idle.

Item	Description
1	Servo Gauge Ports (SAE 06)
2	Lock Nut
3	Adjusting Screw

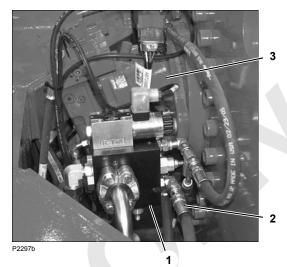
Wrench Size

Pump Series	Lock Nut Hex Size	Internal Hex Size
Early Series Units	17 mm	5 mm
Current Series Units	10 mm	3 mm

FIGURE 2-30

- Loosen lock nut (2).
- **6.** Using an internal hex wrench, turn adjusting screw (3) *in* until pressure *increases* in either gauge.
- 7. Note angular position of internal hex wrench.
- Then, turn adjusting screw out until pressure increases an equal amount in other gauge.
- **9.** Again, note angular position of internal hex wrench.
- **10.** Turn adjusting screw *in* half the distance between positions noted above.
- **11.** Pump control should now be in neutral with both gauges reading same pressure.
- **12.** Hold adjusting screw (3) in position and securely tighten lock nut (2).
- **13.** Stop engine, remove gauges, and securely install servo gauge port plugs (1).

Motor Leakage Test


Perform the following test if troubleshooting indicates the need:

- Low Charge Pressure
- Sluggish Operation
- Excessive Heat

See Figure 2-31 for the following procedure.

- 1. Stop engine.
- 2. Install an accurate flow meter in highest case drain port (see Figure 2-16) at desired motor.
 - A 3,000 psi (207 bar) in-line meter with a flow rate of 30 gpm (114 L/m) is required.
 - All motors except swing require 16 ORS fittings.
 Swing requires 12 ORS fittings.
- 3. For hoist motors only, disable loop flushing as follows:
 - **a.** Disconnect loop flushing hose (2) from elbow in loop flushing valve (1).
 - b. Install an 08 ORS cap on end of elbow and an 08 ORS plug in end of hose.
- 4. Start and run engine at high idle.
- Monitor flow meter. Under all operating conditions, leakage should not be more than 1-1/2 to 2-1/2 gpm (5,7 to 9,5 L/m.
- Stop engine and enable loop flushing by reconnecting hose to elbow in loop flushing valve.
- Start and run engine at high idle.

Typical Motor Installation

Item	Item Description				
1	Loop Flushing Valve				
2	Loop Flushing Hose				
3	Motor				

FIGURE 2-31

- 8. Monitor flow meter. Under all operating conditions, leakage should not be more than 5-1/2 to 6-1/2 gpm (20,8 to 24,6 L/m).
- **9.** If motor leakage without loop flushing is not within specified range, *replace* motor and pump.
- 10. If motor leakage with loop flushing is not within specified range, replace loop flushing valve and/or motor and pump depending on which is the cause for high leakage.

Loop Flushing Valve Adjustment

The loop flushing valves for the hoists – load and boom – are not adjustable. Do not tamper with settings of valve cartridges in loop flushing valve manifold.

If you are experiencing excessive leakage do to a faulty loop flushing valve, *replace valve*.

Manual Override Tests

The pumps, motors, and solenoid valves have manual overrides that allow electrical problems to be isolated from mechanical problems when troubleshooting hydraulic system problems.

Falling or Moving Load Hazard!

To prevent unexpected movement of loads or crane when operating any manual override:

- Park crane in an area where it will not interfere with other job site equipment or structures.
- Land all loads and lower boom onto blocking at ground level.
- Park all crane functions.

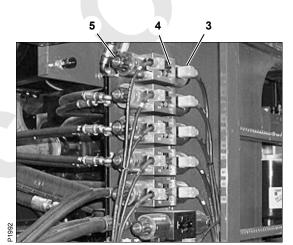
Pump or Motor Override

See Figure 2-32 for the following procedure.

- Rotate manual override (2) in either direction to stroke pump or motor in corresponding direction.
 - If pump or motor is operating properly, corresponding side of circuit will stall.

Solenoid Valve Override

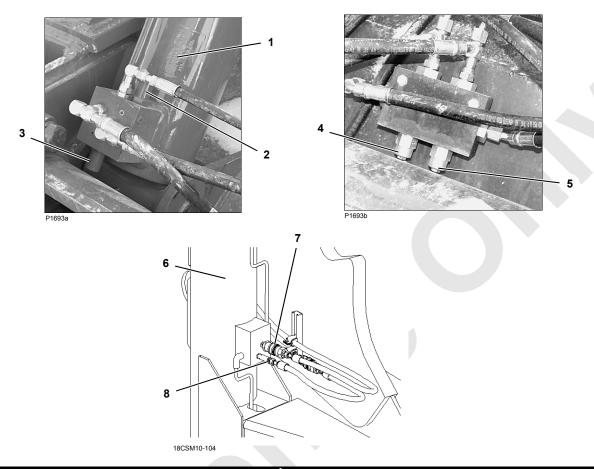
See Figure 2-32 for the following procedure.


1. Start and run engine at low idle.

1. Start and run engine at low idle.

- Insert a rigid steel rod through hole in end of valve cap.
- Depress valve spool with rod.
- If valve is operating properly, corresponding side of circuit should operate.

Typical Pump Installation



Typical Solenoid Valve Installation

Item	Description	Item	Description
1	Pump EDC/Motor PCP	4	Solenoid Valve
2	Manual Override	5	Manual Override (though end cap)
3	Electrical (DIN) Connector		

FIGURE 2-32

Counterbalance Valves Adjustment

Item	Description	Item	Description
1	Right Mast Cylinder	5	Mast Cylinder Extend Valve
2	Mast Cylinder Counterbalance Extend Valve	6	Rotating Bed Jack
3	Mast Cylinder Counterbalance Retract Valve	7	Rotating Bed Jack Extend Counterbalance Valve
4	Mast Cylinder Retract Valve	8	Rotating Bed Jack Retract Counterbalance Valve

Each jacking cylinder has a single counterbalance valve at the piston end of the cylinder. The retract adjusting screw at the valve provides adjustment for each jacking cylinder load support. The extend adjusting screw allows cylinders to be adjusted for uniform operation on level ground.

Counterbalance valves are pre-adjusted at the factory, but are not calibrated. Adjust counterbalance valves with a closed end wrench and hex wrench. To avoid over-adjusting the cylinders, use a hex wrench as a guide and never turn a counterbalance valve more than 1/2 turn in either direction.

To adjust a counterbalance valve:

- Loosen the adjusting lock nut.
- Rotate counterbalance adjusting screw 1/2 turn clockwise (in) to lower holding pressure.
- Rotate counterbalance adjusting screw 1/2 turn counterclockwise (out) to raise holding pressure.
- While holding counterbalance-adjusting screw with hex wrench, tighten lock nut.
- Recheck cylinder(s) for correct load support and uniform operation.

THIS PAGE INTENTIONALLY LEFT BLANK

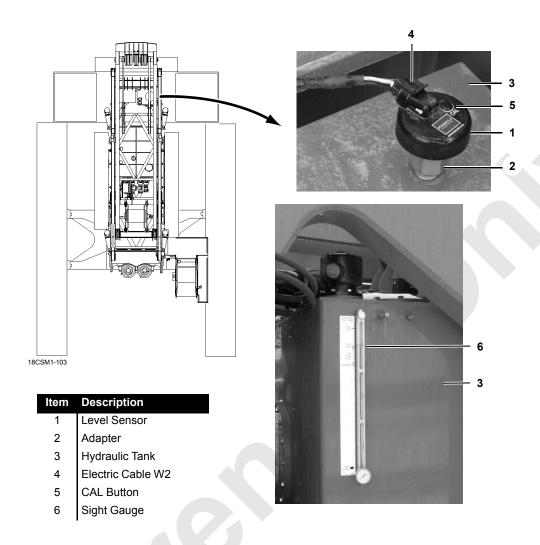


FIGURE 2-33

HYDRAULIC TANK LEVEL SENSOR CALIBRATION

See Figure 2-33 for the following procedures.

The following calibration procedures apply only to crane Serial Number 18001082 and newer.

Perform the calibration procedures:

- If you are installing a new level sensor (1)
- If you see faulty level readings in the digital display

Empty Calibration

- 1. In the operator cab, turn the engine stop/run/start switch to the STOP position.
- 2. Disconnect electric cable (4) from level sensor (1).
- 3. Remove level sensor (1) from hydraulic tank (3).
- 4. Wipe the level sensor rod dry with a clean rag.
- Depress CAL button (5) hold.
- Turn the engine stop/run/start switch to the RUN position.
- **7.** Connect electric cable (4) to level sensor (1) while continuing to hold the CALL button down for 5 more seconds.
- 8. Release the CAL button.
- **9.** Empty calibration is now set. The hydraulic oil level in the digital display should read **0%**.

HYD TANK FLUID LEVEL	0 %
CURRENT (MAX) WIND SPEED	20 MPH
PUMP DRIVE TEMP	160 DEG
PUMP DRIVE PRESSURE	25 PSI

FIGURE 2-34

- Turn the engine stop/run/start switch to the STOP position.
- 11. Disconnect electric cable (4) from level sensor (1).
- 12. Securely install adapter (2) and level sensor (1).

Apply Loctite® 569 to the threads of the adapter and the level sensor.

- **13.** Connect electric cable (4) to level sensor (1).
- **14.** Perform the Full Cold Calibration procedure.

Full Cold Calibration

Perform the following calibration procedure when the hydraulic oil is cold.

- 1. In the operator cab, turn the engine stop/run/start switch to the STOP position.
- 2. If not already done:
 - A. Securely install adapter (2) and level sensor (1).
 Apply Loctite® 569 to the threads of the adapter and the level sensor.
 - **b.** Connect electric cable (4) to level sensor (1).
- **3.** Fill the hydraulic tank with approved hydraulic oil to the FULL COLD mark on sight gauge (5).
- Turn the engine stop/run/start switch to the RUN position.
- Depress the CAL button on the top of the sensor and hold for 5 seconds to set full cold calibration.
- **6.** Full cold calibration is now set. The hydraulic oil level in the digital display should read **100**%.

HYD TANK FLUID LEVEL	100 %
CURRENT (MAX) WIND SPEED	20 MPH
PUMP DRIVE TEMP	160 DEG
PUMP DRIVE PRESSURE	25 PSI

FIGURE 2-35

NOTE: As the hydraulic oil warms up, the level in the digital display will rise to a maximum of 110% when the oil is at FULL HOT mark on the sight gauge.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 3 ELECTRIC SYSTEM

TABLE OF CONTENTS

Electrical Schematics	3-1
Checking and Replacing Electrical Components	3-1
Circuit Breaker Identification	. 3-2
Test Voltages	
CAN Bus Nodes	3-3
Pumps and Motors	
Alphabetical Index of Components	3-5
Node Heading Descriptions	. 3-5
NODE 1 - Master Node (Front Console)	. 3-6
NODE 2 - Handles and Cab Controls	
NODE 3 - Drum 3 and Pressure Senders	3-11
NODE 4 - Connecting Pins, Jacking, and Mast	
NODE 5 - Alarms, Pump Controls, and Limits	3-14
NODE 6 - Drums 2, 4, & 5, and Adapter Frame	3-18
NODE 7 - Swing, Travel and Auto Lube	3-20
NODE 8 - Drum 1 and Drum 6	
NODE 9 - MAX-ER	
NODE 20 - Boom Block Up, Block Sensor, & Limits	3-26
NODE 21 - Luffing Jib, Block Up, Block Sensor, Limits	3-27
NODE 0 - Power, Engine Controls, and Diagnostics	
Abbreviations	3-29
Checking Electrical Inputs/Outputs	3-30
Control Handle Voltages	3-30
Dielectric Grease	3-33
Digital Display	
Crane Operating Conditions	
Operating Limits	3-34
System Faults	3-35
Function Speed/Torque Adjustment	3-40
Adjustment	
Crane Diagnostics	3-40
General	
Drum 1	
Drum 2	
Drum 3	
Drum 4	
Drum 5	
Drum 6	
Swing (Crane)	
Trk (Travel)	
FCN (Front Console Node)	3-43
CAN (Can Bus)	3-44
Hydraulic System Calibration	
Speed/Torque	3-45
Accessory System	
Wireless	
Block Level Sensor	
Crane Mode	
Hydraulic Fan (Tier 4 only)	
Digital Input and Output Item Tables	3-47

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 3 ELECTRIC SYSTEM

ELECTRICAL SCHEMATICS

Electrical schematics are located at the end of this section.

CHECKING AND REPLACING ELECTRICAL COMPONENTS

DANGER

Electrical Shock Hazard!

Ensure that the battery cables are disconnected from the batteries before loosing any electrical connections.

- 1. Visually inspect all electrical harnesses and cables every month or at 200 hours of service life for the following:
 - Damaged, cut or deteriorated harness loom covering
 - Damaged, cut or abraded individual wires or cable insulation
 - Exposed bare copper conductors
 - Kinked, crushed, flattened harnesses or cables
 - Blistered, soft, degraded wires and cables
 - Cracked, damaged, or badly corroded battery terminal connections
 - Inspect all machine ground connections for damaged terminals or excessive corrosion
 - Other signs of significant deterioration

If any of these conditions exist, evaluate the harness for repair or replacement.

- 2. At the same service interval, visually inspect all Controller Area Network (CAN) nodes and electrical junction boxes for the following:
 - Damaged or loose connectors

- Damaged or missing electrical clamps or tie straps
- Excessive corrosion or dirt on the junction boxes
- Loose junction box mounting hardware

If any of these conditions exist, address them appropriately.

See Table 3-1 below for the following items.

- Harness and battery cables operating in Zone C are recommended to be replaced after 10,000 hours of service life.
- 4. Harness and cables operating in Zone A and B with high ambient temperatures and high duty circuits could see electrical service life reduced by 25% to 40%. It is recommended to replace these assemblies after 8,000 hours of service life.
- 5. Harness and cable assemblies operating in Zone D and E should expect a degrade of mechanical properties and long term exposure to these cold temperatures will negatively impact service life. It is recommended for these electrical harnesses and cable assemblies to be inspected to step 1 above as service life may be more than 10,000 hours.
- 6. Harness and cable assemblies operating in salt water climates could see a significant reduction in service life. Therefore it is recommended for these electrical harnesses and cable assemblies to be inspected to step 1 above as service life may be more than 8,000 hours.

Table 3-1 Climate Zone Classification:

Item	Description
Α	Tropical Moist: All months average above 18°C.
	Latitude: 15° - 25° N & S
В	Dry or Arid: Deficient precipitation most of the year.
	Latitude: 20° - 35° N & S
С	Moist Mid-Latitude: Temperate with mild winters.
	Latitude: 30° - 50° N & S
D	Moist Mid-Latitude: Cold winters.
	Latitude 50° - 70° N & S
Е	Polar: Extremely cold winters and summers.
	Latitude: 60° - 75° N & S

CIRCUIT BREAKER IDENTIFICATION

This section contains circuit breaker identification. There are no individual in-line fuses.

Circuit breakers CB-1 through CB-8 are mounted in the engine node-0 controller box in left side enclosure.

Circuit breakers ABCB1 through ABCB4 are mounted in load center of right hand console in operator's cab.

Table 3-2 Circuit Breaker Identification

Circuit Breaker Location	Circuit Breaker	Amps	Wire No.	Description of Items Protected
	CB-1	60	6A	Main System 24 Volt Power
	CB-2	8	6C2	Electronic Control Module (Cummins)
	CB-3*	10	6C6	Electronic Control Module (Cummins Tier 3)
⊕ ⊕ CM ⊕ CM ⊕ PORER ⊕ ⊕	CB-3*	30	6C6	Electronic Control Module (Cummins Tier 4)
	CB-4	10	6C8	Engine Stop
	CB-4	10	6C8	Engine Stop-Run-Start
	CB-4	10	6C8	Dome Light
	CB-4	10	6C8	Horn
	CB-4	10	6C8	Radio
	CB-5	15	6C11	Ether Start
	CB-5	15	6C11	Air Conditioner Clutch
	CB-5	15	6C11	Heater/Air Conditioner Compressor
⊕ 6650	CB-6	30	6C12	Start Solenoid
81015969	CB-7	50	6C13	Can Buss Power
Left Side Enclosure Near Engine	CB-7	50	6C13	Master Node 1 Power
	CB-7	50	6C13	Operating Controls
	CB-8	50	6C14	Cap Power
	* 10 amps 7	Tier 3 or 30	amps Tier 4	4 (reference crane electrical schematic)
A8CB4 A8CB3 A8CB2 A8CB1	A8CB1	25	8PW	24/12 Volt Converter
(A8CB2	15	8HP	Air Conditioning/Heater Power
	A8CB3	15	8WF 8WO	Front Wiper Overhead Wiper
	A8CB4	8	8P	Panel Lights

18CSM3-100

¹⁰⁰ In Load Center (Bottom of Right Console)

TEST VOLTAGES

CAN Bus Nodes

The Model 18000 operating system is an EPIC[®] (Electrical Processed Independent Control) with Can-Bus technology. The can bus system uses multiple nodes that contain controllers. The controllers communicate with node 1 (master) controller by sending data packets over a two-wire

bus line. The data packets are tagged with addresses that identify system components of each node.

A wireless hand-held radio remote is used for operating setup items.

Test voltages are sorted by nodes (reference Electrical Schematic A06374). The nodes are listed and identified in Figure 3-1.

Node Number	Node
1	Master (Front Console)
2	Handles and Cab Controls
3	Drum 3 and Pressure Senders
4	Jacking, Connecting Pins, and Mast
5	Alarms, Limits, and Pump Controls
6	Drums 2, 4, 5, and Adapter Frame Pins
7	Swing, Travel and Auto Lube
8	Drum 1 and Drum 6
9	MAX-ER
0	Power, Engine Controls, and Diagnostics
20	Boom Block Up, Block Sensor, & Limits
21	Luffing Jib Block Up, Block Sensor, & Limits

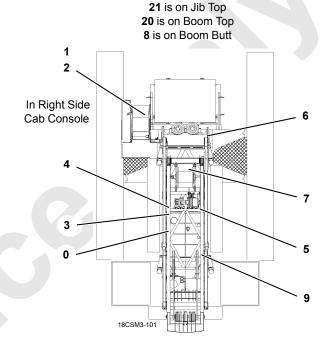


FIGURE 3-1

Pumps and Motors

The node output voltage and input voltage values at the pumps and motors are shown in Table 3-3 and Table 3-4.

Table 3-3. Pump Values

	At Node	At Pump
All	0 to 24 Volts	0 to 2 Volts (0 - 95 mA) ¹

Table 3-4 Motor Values

	At Node	At Motor
Boom Hoist (Drum 4)	2.5 to 22 Volts	.2 to 2.2 Volts (10 to 90 mA) ¹
Travel	0 or 24 Volts	0 or 24 Volts (0 or 1500 mA) ^{1,2}
Hoist Drum 3 and 6	2.5 to 16 Volts	.2 to 1.6 Volts (10 to 65 mA) ¹
Hoist Drum 1 and 2	2.5 to 19 volts	.2 to 1.9 volts (10 to 75 mA) ¹

¹ Resistance increases as the temperature rises on the pump or motor control coil resulting in decreased current values (mA) when measured with a meter. The listing in the table is the current range for a 21°C (70°F) coil.

²Travel motor control is two speed. When the 2-speed travel motor control solenoid is energized, the motor is locked in max displacement. When the motor control solenoid is de-energized, the pressure compensator will shift the motor to min displacement. The Master Node will only de-energize the coil if the 2-Speed Travel Switch is in the high speed position and the engine RPM is above 1500. The pressure compensator override will begin to shift motor back to max displacement, low speed as the closed loop pressure reaches or exceeds 3915 to 4200 PSI (270 to 290 BAR) in order to stabilize and hold the pressure constant protecting the motor from over heating and catastrophic failure.

Alphabetical Index of Components

Find the desired component item in this index. Check the component item node location, then see indicated node to find the test voltage for that item.

Component	Location
Accessory System Components	Node 4
Adapter frame Pins	Node 6
Alarms	Node 5
Air Conditioning Clutch	Nodes 0 & 1
Auto Lube	Node 7
Block Up Limit (Boom)	Node 20
Block Up Limit (Luffing Jib)	Node 21
Cab Switches and Controls	Nodes 1 & 2
Cab Power	Node 0
Cab Tilt	Node 4
Control Handles	Nodes 1 & 2
Drum 1(Main Hoist 1) Components	Nodes 3 & 8
Drum 2 (Main Hoist 2) Components	Nodes 3 & 6
Drum 3 (Whip Line Hoist) Components	Nodes 3 & 4
Drum 4 (Boom Hoist) Components	Nodes 5 & 6
Drum 5 (Mast Hoist) Components	Nodes 4 & 6
Drum 6 (Luffing Hoist) Components	Nodes 5 & 8
Drum 7 (Rigging Winch) Components	Nodes 4 & 6
Engine Control Module	Node 0
Filters	Node 5
Jacking Components	Node 4
Limits	Node 5
Mast	Node 4
MAX-ER	Node 9
Pressure Senders	Nodes 3, 5 & 6
Swing Components	Nodes 3 & 7
Throttle (Hand and Foot)	Node 2
Travel Components	Nodes 3, 6 & 7

Node Heading Descriptions

CAN ID. NO. indicates the can bus system node number, cable, receptacle number, and pin number code (*43-D*) is as follows:

- The letter and number 43 is the cable number.
- The number 4 is the node number.
- The number 3 is the receptacle number where the item is located on the node.
- The last number **D** is the **pin number** of the receptacle.

FUNCTION TYPE indicates the type of connection - such as power, ground, signal, analog input (AI), digital input (DI), or digital output (DO).

RECPT/PIN NO. (Engine Node 0 only) indicates input to receptacle number and pin number code (P1-7 or J2-E).

WIRE NO. (Engine Node 0 only) indicates wire to computer internal receptacle (0107) or wire number code (6C12A).

DESCRIPTION indicates the component item.

PACKET NO. indicates location of items for master node 1, node 2, universal nodes (3 though 9), boom node 20, and luffing jib node 21. Engine node 0 does not have packet numbers.

Master (front console node) node 1:

- **FCN-2-4** (Limit Bypass Switch) indicates where the inputs/output are located on the master node 1.
- FCN is the packet location number.
- Number 2 is the **bank** where information is stored.
- Number 4 is the identifier for that item.

Node 2, universal nodes (3 though 9), boom node 20, and luffing jib node 21:

- **CAN38-1-32** (Return Filter Alarm Switch) indicates where the inputs/output are located on the node.
- CAN38 is the packet location number.
- Number 1 is the bank where information is stored.
- Number 32 is the identifier for that item.

NODE 1 - Master Node (Front Console)

Reference Electrical Schematic A06374 - Sheets 4, 5, and 17.

Can ID. # /Connector #	Function Type	Description	Test Voltages	Packet No
J11		Receptacle – Fron	nt Console	
1101/P11-1	24 Volts	Backlight Power	24 Volts	
1102/P11-2	24 Volts	Crane Display Contrast Control – High	24 Volts	
1103/P11-3	DI-12	RCL Display Scroll Up Switch	0 Volts Off; 24 Volts On	FCN-2-8
1104/P11-4	DI-14	RCL Display Scroll Down Switch	0 Volts Off; 24 Volts On	FCN-2-32
1105/P11-5	DI-31	RCL Mode Select Switch	0 Volts Off; 24 Volts On	FCN-4-64
1106/P11-6	DI-9	RCL Mode Confirm Switch	0 Volts Off; 24 Volts On	FCN-2-1
1107 /P11-7	DO-1	Operating Limit Alarm (Beeper) & L.E.D.	0 Volts Off; 24 Volts On	FCN-5-1
1108/P11-8	DO-3	RCL Warning L.E.D.	0 Volts Off; 24 Volts On	FCN-5-4
1109 /P11-9	DO-8	System Fault Alarm (Buzzer) & L.E.D.	0 Volts Off; 24 Volts On	FCN-5-128
1110/P11-10	DO-6	RCL Caution L.E.D.	0 Volts Off; 24 Volts On	FCN-5-32
1111/P11-11	24 Volts	Backlight Power	24 Volts	
1112/P11-12	Signal	Crane Display Contrast Control – Wiper	Between 0 to 24 Volts	
1113/P11-13	DI-11	Limit Bypass Switch	0 Volts Off; 24 Volts On	FCN-2-4
1114/P11-14	DI-13	Not Used	0 Volts Off; 24 Volts On	FCN-2-16
1115/P11-15	DI-32	Drum 3 (Whip Line) Park Switch – On	0 Volts Off; 24 Volts On	FCN-4-128
1116/P11-16	DI-10	Drum 5 (Mast Hoist) Park Switch - On	0 Volts Off; 24 Volts On	FCN-2-2
1119/P11-19	DO-7	RCL Fault Alarm in Cab	0 Volts Off; 24 Volts On	FCN-5-64
1121/P11-21	Ground	Backlight Ground	Ground	
1122/P11-22	Ground	Crane Display Contrast Control – Low	Ground	
1123/P11-23	DI-28	Travel 2-Speed Switch	0 Volts Off; 24 Volts On	FCN-4-8
1124/P11-24	DI-30	Swing Park Switch – On	0 Volts Off; 24 Volts On	FCN-4-32
1125/P11-25	DI-15	Travel Cruise Switch - On	0 Volts Off; 24 Volts On	FCN-2-64
1129/P11-29	Ground	RCL Caution L.E.D.	Ground	
1130/P11-30	Ground	RCL Warning L.E.D.	Ground	
1131/P11-31	CANH	Can High Data Line	N/A	
1132/P11-32	CANL	Can Low Data Line	N/A	
J12		Receptacle – Fron	t Console	1
1201/P12-1	24 Volts	Backlight Power	24 Volts	
1202/P12-2	24 Volts	RCL Display Contrast Control - High	24 Volts	
1203/P12-3	DI-4	Crane Display Scroll Up Switch	0 Volts Off; 24 Volts On	FCN-1-8
1204/P12-4	DI-6	Crane Display Scroll Down Switch	0 Volts Off; 24 Volts On	FCN-1-32
1205/P12-5	DI-23	Crane Mode Select Switch	0 Volts Off; 24 Volts On	FCN-3-64
1206/P12-6	DI-2	Crane Mode Confirm Switch	0 Volts Off; 24 Volts On	FCN-1-2
1208/P12-8	DO-11	Engine Diagnostics (Red L.E.D.)	0 Volts Off; 24 Volts On	FCN-6-4
1209/P12-9	DO-16	Engine Diagnostics (Amber L.E.D.)	0 Volts Off; 24 Volts On	FCN-6-128
1210/P12-10	DO-14	Engine Diagnostics (White L.E.D.)	0 Volts Off; 24 Volts On	FCN-6-32
1211/P12-11	24 Volts	Backlight Power	24 Volts	

Can ID. # /Connector #	Function Type	Description	Test Voltages	Packet No.
1212/P12-12	Signal	RCL Display Contrast Control - Wiper	Between 0 to 24 Volts	
1213/P12-13	DI-3	Drum 1 (Main Drum 1) Park Switch – On	0 Volts Off; 24 Volts On	FCN-1-4
1214/P12-14	DI-5	Drum 2 (Main Drum 2) Park Switch – On	0 Volts Off; 24 Volts On	FCN-1-16
1215/P12-15	DI-24	Drum 4 (Boom Hoist) Park Switch – On	0 Volts Off; 24 Volts On	FCN-3-128
1216/P12-16	DI-1	Drum 6 (Luffing Jib) Park Switch – On	0 Volts Off; 24 Volts On	FCN-1-1
1217/P12-17	DO-10	Handle B Display	24 Volts Nominal	FCN-6-2
1218/P12-18	DO-12	Handle D Display	24 Volts Nominal	FCN-6-8
1219/P12-19	DO-15	Handle C Display	24 Volts Nominal	FCN-6-64
1220/P12-20	DO-13	Handle A Display	24 Volts Nominal	FCN-6-16
1221/P12-21	Ground	Backlight Ground	Ground	
1222/P12-22	Ground	RCL Display Contrast Control - Low	Ground	
1223/P12-23	DI-20	Air Conditioning Compressor Clutch - On	0 Volts Off; 24 Volts On	FCN-3-8
1224/P12-24	DI-22	Engine Start	0 Volts Off; 24 Volts On	FCN-3-32
1225/P12-25	DI-7	Travel Park Switch – On	0 Volts Off; 24 Volts On	FCN-1-64
1226/P12-26	DI-17	Seat Switch	0 Volts Off; 24 Volts On	FCN-3-1
1228/P12-28	Ground	Engine Diagnostics (Red L.E.D.)	Ground	
1229/P12-29	Ground	Engine Diagnostics (Amber L.E.D.)	Ground	
1230/P12-30	Ground	Engine Diagnostics (White L.E.D.)	Ground	
1231/P12-31	CANH	Can High Wire Termination	N/A	
1232/P12-32	CANL	Can Low Wire Termination	N/A	
1233/P12-33	DI-19	DPF Regen Initiate	0 Volts Off; 24 Volts On	
1234/P12-34	DI-21	DPF Regen Inhibit	0 Volts Off; 24 Volts On	
1235/P12-35	DI-8	Cab Tilt Up Switch	0 Volts Off; 24 Volts On	FCN-1-128
1236/P12-36	DI-18	Cab Tilt Down Switch	0 Volts Off; 24 Volts On	FCN-3-2
1237/P12-37	Ground	System Fault Alarm	Ground	
1238/P12-38	Ground	Operating Limit Alarm	Ground	
1237/P12-37	Ground	System Fault Alarm	Ground	

NODE 2 - Handles and Cab Controls

Reference Electrical Schematic A06374 - Sheets 4, 5, 6 and 18.

Can ID. # /Connector #	Function Type	Description	Test Voltage	Packet No.
J1		Receptacle -	Alarms	
2101/P51-1	CAN-H	Can High Data Line	N/A	
2102/P51-2	CAN-L	Can Low Data Line	N/A	
2103/P51-3	Al-2	Handle B Output Signal	Raise 2.4 - 0.5 Volts; Lower 2.6 - 4.5 Volts	CAN0-4 ¹
2104/P51-4	AI-5	Handle C Output Signal	Raise 2.4 - 0.5 Volts; Lower 2.6 - 4.5 Volts	CAN1-2 ¹
2105/P51-5	AI-10	Handle D Output Signal	Lower 2.6 - 4.5 Volts; Raise 2.4 - 0.5 Volts	CAN2-4 ¹
2106/P51-6	AI-14	Hand Throttle Input Signal	Low Idle 2.9 – 3.0 Volts; High Idle 0.9 – 1.0 Volts	CAN3-4 ¹
2107/P51-7	DI-10	Handle B Direction Signal	0 to 24 Volts	CAN57-2-2
2108/P51-8	DI-11	Handle C Direction Signal	0 to 24 Volts	CAN57-2-4
2109/P51-9	DI-2	Handle D Direction Signal	0 to 24 Volts	CAN57-1-2
2110/P51-10	DI-3	Swing Holding Brake Switch	0 Volts Off; 24 Volts On	CAN57-1-4
2111/P51-11	CAN-H	Can High Data Line to Node 1	N/A	
2112/P51-12	CAN-L	Can Low Data Line to Node 1	N/A	
2113/P51-13	AI-4	Left Travel Handle Output Signal	Forward 2.6 - 4.5 Volts; Reverse 2.4 - 0.5 Volts	CAN0-8 ¹
2114/P51-14	AI-6	Right Travel Handle Output Signal	Forward 2.6 - 4.5 Volts; Reverse 2.4 - 0.5 Volts	CAN1-4 ¹
2115/P51-15	AI-9	Handle A Output Signal	Raise 2.4 - 0.5 Volts; Lower 2.6 - 4.5 Volts	CAN2-2 ¹
2116/P51-16	AI-13	Swing Handle Output Signal	Left 2.4 - 0.5 Volts; Right 2.6 - 4.5 Volts	CAN3-2 ¹
2117/P51-17	DI-9	Left Track Direction Signal	0 to 24 Volts	CAN57-2-1
2118/P51-18	DI-12	Right Track Direction Signal	0 to 24 Volts	CAN57-2-8
2119/P51-19	DI-1	Handle A Direction Signal	0 to 24 Volts	CAN57-1-1
2120/P51-20	DI-4	Swing Handle Direction Signal	0 to 24 Volts	CAN57-1-8
2121/P51-21	Ground	Foot Throttle	Ground	
2122/P51-22	Ground	Handle and Node Select Ground	Analog Ground	
2123/P51-23	Al-1	Foot Throttle Input Signal	Low Idle 2.9 – 3.0 Volts; High Idle 0.9 – 1.0 Volts	CAN0-2 ¹
2124/P51-24	AI-8	Left Travel Pedal	Forward 2.6 - 4.5 Volts; Reverse 2.4 - 0.5 Volts	CAN1-8 ¹
2125/P51-25	Al-12	Right Travel Pedal	Forward 2.6 - 4.5 Volts; Reverse 2.4 - 0.5 Volts	CAN2-8 ¹
2128/P51-28	DI-7	RCL Override (CE Option)	0 Volts Off; 24 Volts On	CAN 57-1-64
2131/P51-31	5 Volts DC	Handle A and Hand Throttle Power	5 Volts	
2132/P51-32	Node 1	Node Select Jumper 1 to Ground	0 Volts (With Jumper)	
2140/P51-40	DI-5	Swing Handle Dead Man Option	0 Volts Off; 24 Volts On	CAN57-1-16

Can ID. # /Connector #	Function Type	Description	Test Voltage	Packet No.
J2		Receptacle - H	andles	<u> </u>
2201/P52-1	DO-7	Handle B Rotation Indicator	24 Volts Nominal	CAN32-1-64
2202/P52-2	DO-3	Handle C Rotation Indicator	24 Volts Nominal	CAN32-1-4
2203/P52-3	DO-6	Handle D Rotation Indicator	24 Volts Nominal	CAN32-1-32
2204/P52-4	DO-2	Handle A Rotation Indicator	24 Volts Nominal	CAN32-1-2
2205/P52-5	DO-5	Overhead Wiper Switch	24 Volts Nominal	CAN32-1-16
2206/P52-6	DO-13	Power to Switches 1	24 Volts Nominal	CAN32-2-16
2207/P52-7	DO-16	Power to Switches 2	24 Volts Nominal	CAN32-2-128
2208/P52-8	DO-9	Power to Switches 3	24 Volts Nominal	CAN32-2-1
2209/P52-9	DO-19	Handle B Raise Direction	24 Volts Nominal	CAN32-3-4
2210/P52-10	DO-12	Handle B Lower Direction	24 Volts Nominal	CAN32-2-8
2211/P52-11	DO-4	Front Wiper Switch	24 Volts Nominal	CAN32-1-8
2213/P52-13	DO-8-2	Handle B Display	24 Volts Nominal	CAN32-1-128
2214/P52-14	Ground	Handle B Display	Ground	
2215/P52-15	DO-1	Cab Base RCL Beacon/Alarm	24 Volts Nominal	CAN32-1-1
2216/P52-16	DO-22	Handle C Raise Direction	24 Volts Nominal	CAN32-3-32
2217/P52-17	DO-24	Handle C Lower Direction	24 Volts Nominal	CAN32-3-128
2218/P52-18	DO-10	Handle D Lower Direction	24 Volts Nominal	CAN32-2-2
2219/P52-19	DO-18	Handle D Raise Direction	24 Volts Nominal	CAN32-3-2
2220/P52-20	Ground	Handle D Display	Ground	
2221/P52-21	DO-8-3	Handle D Display	24 Volts Nominal	CAN32-1-128
2222/P52-22	DO-8-4	Handle C Display	24 Volts Nominal	CAN32-1-128
2223/P52-23	Ground	Handle B Rotation Indicator	Ground	
2224/P52-24	Ground	Handle C Rotation Indicator	Ground	
2225/P52-25	Ground	Handle D Rotation Indicator	Ground	
2226/P52-26	DO-15	Left Travel Handle Reverse Direction	24 Volts Nominal	CAN32-2-64
2227/P52-27	DO-14	Left Travel Handle Forward Direction	24 Volts Nominal	CAN32-2-32
2228/P52-28	DO-11	Right Travel Handle Reverse Direction	24 Volts Nominal	CAN32-2-4
2229/P52-29	DO-17	Right Travel Handle Forward Direction	24 Volts Nominal	CAN32-3-1
2230/P52-30	Ground	Handle C Display	Ground	
2231/P52-31	DO-8-5	Handle A Display/Seat Switch	24 Volts Nominal	CAN32-2-128
2233/P52-33	5 Volts DC	Handle B Power	5 Volts DC Nominal	
2234/P52-34	5 Volts DC	Handle C Power	5 Volts DC Nominal	
2235/P52-35	5 Volts DC	Handle D Power	5 Volts DC Nominal	
2236/P52-36	DO-21	Travel Cruise Switch	0 Volts Off; 24 Volts On	CAN-32-3-16
2237/P52-37	DO-23	Foot Throttle Output	Low Idle 2.9 – 3.0 Volts; High Idle 0.9 – 1.0 Volts	CAN-32-3-64
2239/P52-39	5 Volts DC	Left Travel Handle Power	5 Volts DC Nominal	
2240/P52-40	5 Volts DC	Right Travel Handle Power	5 Volts DC Nominal	
J3		Receptacle - F	Power	

Can ID. # /Connector #	Function Type	Description	Test Voltage	Packet No.
P53-A	Ground	Setup Receiver	Ground	
P53-B	Ground	Left Console	Ground	
P53-C	Ground	Cab Ground	Ground	
P53-E	28 Volts	Setup Receiver	28 Volts Nominal	
P53-F	28 Volts	Bar Graph Display	28 Volts Nominal	

¹ – Lower four bits are the most significant bit of the analog value.

NODE 3 - Drum 3 and Pressure Senders

Reference Electrical Schematic A06374 - Sheets 7, 19 and 20.

Can ID. No.	Function Type	Description	Test Voltage	Packet No.
WN10-A/WN04-A	24 Volts	From Node 0 to Node 4	24 Volts	
WN10-C/WN04-C	CANH	Can High Wire Transmission	N/A	
WN10-D/WN04-D	Ground	From Node 0 to Node 4	Ground	
WN10-F/WN04-F	CANL	Can Low Wire Transmission	N/A	
J3		Receptacle – Pressure	Senders	
33-B	DO-1	Super Charge Hydraulic Pressure (Prior to S/N 18001082)	0 Volts Off; 24 Volts On	CAN33-1-1
33-C	Ground	Drum 2/5 Pressure Sender	Ground	
33-D	DO-2	Drum 2/5 Pressure Sender	0 Volts Off; 24 Volts On	CAN33-1-2
33-E	Ground	Drum 1/3 Pressure Sender	Ground	
33-F	DO-3	Drum 1/3 Pressure Sender	0 Volts Off; 24 Volts On	CAN33-1-4
33-G	Ground	Accessory System Pressure Sender	Ground	
33-H	DO-4	Accessory System Pressure Sender	0 Volts Off; 24 Volts On	CAN33-1-8
33-J	Ground	Jumper to Node Select	Ground	
33-L	NS-2	Node Select Jumper to Ground	0 Volts (With Jumper)	
33-N	Ground	Right Track Pressure Sender	Ground	
33-P	DO-6	Right Track Pressure Sender	0 Volts Off; 24 Volts On	CAN33-1-32
33-R	DO-5	Left Track Pressure Sender	0 Volts Off; 24 Volts On	CAN33-1-16
33-T	DI-3	Super Charge Hydraulic Pressure (Prior to S/N 18001082)	0 Volts Off; 24 Volts On	CAN59-1-4
33-b	AI-2	Drum 2/5 Pressure Sender	1 Volt at 0 psi; 5 Volts at 7,500 psi	CAN4-4 ¹
33-c	AI-3	Drum 1/3 Pressure Sender	1 Volt at 0 psi; 5 Volts at 7,500 psi	CAN4-6 ¹
33-d	Al-4	Accessory System Pressure Sender	1 Volt at 0 psi; 5 Volts at 7,500 psi	CAN4-8 ¹
33-е	AI-5	Right Track Pressure Sender	1 Volt at 0 psi; 5 Volts at 7,500 psi	CAN5-2 ¹
33-f	AI-6	Left Track Pressure Sender	1 Volt at 0 psi; 5 Volts at 7,500 psi	CAN5-4 ¹
33-g	Ground	Left Track Pressure Sender	Ground	
J4		Receptacle – Drum Pum	p Control	
34-A	Ground	Drum 1/3 Pump Control – Raise	Ground	
34-B	DO-11	Drum 1/3 Pump Control – Raise	See <u>Table 3-3</u> for Values	CAN33-2-4
34-C	Ground	Drum 1/3 Pump Control – Lower	Ground	
34-D	DO-12	Drum 1/3 Pump Control – Lower	See <u>Table 3-3</u> for Values	CAN33-2-8
34-E	Ground	Drum 2/5 Pump Control – Raise	Ground	
34-F	DO-13	Drum 2/5 Pump Control – Raise	See <u>Table 3-3</u> for Values	CAN33-2-16
34-G	Ground	Drum 2/5 Pump Control – Lower	Ground	
34-H	DO-14	Drum 2/5 Pump Control – Lower	See <u>Table 3-3</u> for Values	CAN33-2-32
34-J	Ground	Drum 2 Pump Control – Raise	Ground	
34-K	Ground	Drum 2 Pump Control – Lower	Ground	
34-L	Ground	Drum 1/3 (opt.) Pump Control – Raise	Ground	
34-M	DO-17	Drum 1/3 (opt.) Pump Control – Raise	See <u>Table 3-3</u> for Values	CAN33-3-1
34-N	Ground	Drum 1/3 (opt.) Pump Control – Lower	Ground	

Can ID. No.	Function Type	Description	Test Voltage	Packet No.
34-P	DO-16	Drum 2 Pump Control – Raise	See <u>Table 3-3</u> for Values	CAN33-2-128
34-R	DO-15	Drum 2 Pump Control – Lower	See <u>Table 3-3</u> for Values	CAN33-2-64
34-S	DO-18	Drum 1/3 (opt.) Pump Control – Lower	See <u>Table 3-3</u> for Values	CAN33-3-2
34-T	Ground	Left Track Pump Control – Forward	Ground	
34-U	DO-19	Left Track Pump Control – Forward	See <u>Table 3-3</u> for Values	CAN33-3-4
34-V	Ground	Left Track Pump Control – Reverse	Ground	
34-W	DO-20	Left Track Pump Control – Reverse	See <u>Table 3-3</u> for Values	CAN33-3-8
34-X	Ground	Swing 1 Pump Control – Left	Ground	
34-Z	DO-21	Swing 1 Pump Control – Left	See <u>Table 3-3</u> for Values	CAN33-3-16
34-a	Ground	Swing 1 Pump Control – Right	Ground	
34-b	DO-22	Swing 1 Pump Control – Right	See <u>Table 3-3</u> for Values	CAN33-3-32
34-g	Ground	Jumper to Node Select 2	0 Volts (With Jumper)	
34-j	NS-2	Node Select Jumper to Ground	0 Volts (With Jumper)	
J6		Receptacle – Drum 3	Controls	
36-A	Ground	Drum 3 Motor Control	Ground	
36-B	DO-7	Drum 3 Motor Control	See Table 3-3 for Values	CAN33-1-64
36-C	Ground	Drum 3 Brake Solenoid	Ground	
36-D	DO-8	Drum 3 Brake Solenoid	See Table 3-3 for Values	CAN33-1-128
36-E	Ground	Pump Drive Cooler Pressure	Ground	
36-F	DO-9	Pump Drive Cooler Pressure	0 Volts Off; 24 Volts On	CAN33-2-1
36-G	Ground	Drum 3 Minimum Bail Limit Switch	Ground	
36-H	DO-10	Drum 3 Minimum Bail Limit Switch	0 Volts Off; 24 Volts On	CAN33-2-2
36-J	DI-8	Drum 3 Minimum Bail Limit Switch	0 Volts Off; 24 Volts On	CAN59-1-128
36-L	NS-2	Node Select 2 Jumper to Ground	0 Volts (With Jumper)	
36-U	Ground	Jumper to Node Select	Ground	
36-V	5 Volts	Drum 3 and 5 Motor Speed Sensor	0 to 5 Volts	
36-W	Ground	Pump Drive Temperature Sender	Ground	
36-X	28 Volts	Pump Drive Temperature Sender	28 Volts Nominal	
36-Z	Ground	Drum 5 Motor Speed Sensor	Ground	
36-a	AI-9	Pump Drive Cooler Pressure	1 Volt at 0 psi; 5 Volts at 200 psi	CAN6-2 ¹
36-b	AI-10	Pump Drive Temperature Sender	32.5K ohms at 0° C; 680 ohms at 90° C	CAN6-4 ¹
36-j	Ground	Drum 3 Motor Speed Sensor	Ground	
36-n	ENC-1A	Drum 3 Motor Speed Sensor	1.2 or 3.2 Volts Not	CAN58-2 ²
			Moving; 2.2 Volts Moving 1.2 or 3.2 Volts Not	
36-p	ENC-1B	Drum 3 Motor Speed Sensor	Moving; 2.2 Volts Moving	CAN58-2 ²
36-r	ENC-2A	Drum 5 Motor Speed Sensor	1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	CAN58-4 ²
36-s	ENC-2B	Drum 5 Motor Speed Sensor	1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	CAN58-4 ²
_	•	-	+	

¹ – Lower four bits are the most significant bit of the analog value.

 $^{^2}$ – The number in the indicated bank should increase with device rotation and decrease with rotation in opposite direction.

NODE 4 - Connecting Pins, Jacking, and Mast

Reference Electrical Schematic A06374 - Sheets 8, 19 and 20.

Can ID. No.	Function Type	Description	Test Voltage	Packet No.
WN04-A/WN30-A	24 Volts	From Node 3 to Node 2	24 Volts Nominal	
WN04-C/WN30-C	CANH	Can High Wire Transmission	N/A	
WN04-D/WN30-D	Ground	From Node 3 to Node 2	Ground	
WN04-F/WN30-F	CANL	Can Low Wire Transmission	N/A	
J3		Receptacle – Con	necting Pins	
43-A	Ground	Mast Pins Engage Solenoid	Ground	
43-B	DO-1	Mast Pins Engage Solenoid	0 Volts Off; 24 Volts On	CAN35-1-1
43-C	Ground	Mast Pins Disengage Solenoid	Ground	
43-D	DO-2	Mast Pins Disengage Solenoid	0 Volts Off; 24 Volts On	CAN35-1-2
43-E	Ground	Boom Pins Engage Solenoid	Ground	
43-F	DO-3	Boom Pins Engage Solenoid	0 Volts Off; 24 Volts On	CAN35-1-4
43-G	Ground	Boom Pins Disengage Solenoid	Ground	
43-H	DO-4	Boom Pins Disengage Solenoid	0 Volts Off; 24 Volts On	CAN35-1-8
43-J	Ground	Jumper to Node Select 3	Ground	
43-M	NS-3	Node Select 3 Jumper to Ground	0 Volts (With Jumper)	
43-P	DO-6	Cab Tilt – Up Solenoid	0 Volts Off; 24 Volts On	CAN35-1-32
43-R	DO-5	Cab Tilt – Down Solenoid	0 Volts Off; 24 Volts On	CAN35-1-16
43-g	Ground	Cab Tilt – Up Solenoid	Ground	
43-h	Ground	Cab Tilt – Down Solenoid	Ground	
J4		Receptacle – Jacki	ing Solenoids	
44-A	Ground	Drum 7 Payout Solenoid	Ground	
44-B	DO-11	Drum 7 Payout Solenoid	0 Volts Off; 24 Volts On	CAN35-2-4
44-C	Ground	Drum 7 Haul In Solenoid	Ground	
44-D	DO-12	Drum 7 Haul In Solenoid	0 Volts Off; 24 Volts On	CAN35-2-8
44-E	Ground	Right Front Jack Extend Solenoid	Ground	
44-F	DO-13	Right Front Jack Extend Solenoid	0 Volts Off; 24 Volts On	CAN35-2-16
44-G	Ground	Right Front Jack Retract Solenoid	Ground	
44-H	DO-14	Right Front Jack Retract Solenoid	0 Volts Off; 24 Volts On	CAN35-2-32
44-J	Ground	Left Front Jack Extend Solenoid	Ground	
44-K	Ground	Left Front Jack Retract Solenoid	Ground	
44-P	DO-16	Left Front Jack Extend Solenoid	0 Volts Off; 24 Volts On	CAN35-2-128
44-R	DO-15	Left Front Jack Retract Solenoid	0 Volts Off; 24 Volts On	CAN35-2-64
44-T	Ground	Right Rear Jack Extend Solenoid	Ground	
44-U	DO-19	Right Rear Jack Extend Solenoid	0 Volts Off; 24 Volts On	CAN35-3-4
44-V	Ground	Right Rear Jack Retract Solenoid	Ground	
44-W	DO-20	Right Rear Jack Retract Solenoid	0 Volts Off; 24 Volts On	CAN35-3-8
44-X	Ground	Left Rear Jack Extend Solenoid	Ground	
44-Z	DO-21	Left Rear Jack Extend Solenoid	0 Volts Off; 24 Volts On	CAN35-3-16

Can ID. No.	Function Type	Description	Test Voltage	Packet No.
44-a	Ground	Left Rear Jack Retract Solenoid	Ground	
44-b	DO-22	Left Rear Jack Retract Solenoid	0 Volts Off; 24 Volts On	CAN35-3-32
44-g	Ground	Jumper to Node Select 3	Ground	
44-k	NS-3	Node Select 3 Jumper to Ground	0 Volts (With Jumper)	_
16		Receptacle –	Mast	
46-A	Ground	Drum 3 Diverter Solenoid	Ground	
46-B	DO-7	Drum 3 Diverter Solenoid	0 Volts Off; 24 Volts On	CAN35-1-64
46-C	Ground	Drum 5 Diverter Solenoid	Ground	
46-D	DO-8	Drum 5 Diverter Solenoid	0 Volts Off; 24 Volts On	CAN35-1-128
46-E	Ground	Mast Raise Solenoid	Ground	
46-F	DO-9	Mast Raise Solenoid	0 Volts Off; 24 Volts On	CAN35-2-1
46-G	Ground	Mast Lower Solenoid	Ground	
46-H	DO-10	Mast Lower Solenoid	0 Volts Off; 24 Volts On	CAN35-2-2
46-M	NS-3	Node Select 4 Jumper to Ground	0 Volts (With Jumper)	
46-U	Ground	Jumper to Node Select 4	Ground	
46-V	5 Volts	Mast Angle Sensor	5 Volts	
46-W	Ground	Mast Angle Sensor	Ground	
46-a	AI-9	Mast Angle Sensor	5 Volts DC Mast at Vertical	CAN14-2 ¹

¹ – Lower four bits are the most significant bit of the analog value.

NODE 5 - Alarms, Pump Controls, and Limits

Reference Electrical Schematic A06374 - Sheets 9, 19, 20 and 21.

Can ID. No.	Function Type	Description	Test Voltage	Packet No.
WN16-A/WN14-A	24 Volts	From Node 0 to Node 9	24 Volts Nominal	
WN16-C/WN14-C	CANH	Can High Wire Transmission	N/A	
WN16-D/WN14-D	Ground	From Node 0 to Node 9	Ground	
WN16-F/WN14-F	CANL	Can Low Wire Transmission	N/A	
J3		Receptacle – A	larms	
53-B	DO-1	Hydraulic Vacuum Switch	0 Volts Off; 24 Volts On	CAN38-1-1
53-C	Ground	Cooler Fan Pump Control (Tier 4)	Ground	
53-D	DO-2	Return Line Filter 2 Alarm Switch	0 Volts Off; 24 Volts On	CAN38-1-2
53-E	Ground	Cooler Fan Pump Control (Tier 4)	Ground	
53-F	DO-3	Hydraulic Fluid Low Temperature Switch (Tier 2 and Tier 3)	0 Volts Off; 24 Volts On	CAN38-1-4
53-F	DO-3	Cooler Fan Pump Control - Primary Coil (Tier 4)	See <u>Table 3-3</u> for Values	CAN38-1-4
53-H	DO-4	Return Line Filter 3 Alarm Switch	0 Volts Off; 24 Volts On	CAN38-1-8
53-J	Ground	Jumper to Node Select 4	Ground	
53-P	DO-6	Return Line Filter 1 Alarm Switch	0 Volts Off; 24 Volts On	CAN38-1-32

Can ID. No.	Function Type	Description	Test Voltage	Packet No.
53-R	DO-5	Hydraulic Fluid High Temperature Switch (Tier 2 and Tier 3)	0 Volts Off; 24 Volts On	CAN38-1-16
53-R	DO-5	Cooler Fan Pump Control - Back-Up Coil (Tier 4)	See <u>Table 3-3</u> for Values	CAN38-1-16
53-S	NS-4	Node Select Jumper to Ground	0 Volts (With Jumper)	
53-T	DI-3	Hydraulic Fluid Level Switch (Prior to S/N 18001082)	0 Volts Off; 24 Volts On	CAN69-1-4
53-W	DI-4	Return Line Filter 2 Alarm Switch (S/N 18001082 and newer) Charge Filter 1 Alarm Switch (Prior to S/N 18001082)	0 Volts Off; 24 Volts On	CAN69-1-8
53-X	24 Volts	Hydraulic Fluid Temperature Sensor (Tier 4)	24 Volts	
53-Z	24 Volts	Cooler Fan Pressure Transducer (Tier 4)	24 Volts	
53-a	Al-1	Hydraulic Fluid Low Temperature Switch 60° (Tier 2 and Tier 3 only)	0 Volts Off; 24 Volts On	CAN24-3-16
53-a	Al-1	Hydraulic Fluid Temperature Sensor (Tier 4)	32.5K ohms at 0° C; 680 ohms at 90° C	CAN24-3 ¹
53-b	Al-2	Return Line Filter 3 Alarm Switch	0 Volts Off; 24 Volts On	CAN24-2-32
53-c	AI-3	Fuel Level Sensor	0 Volts Off; 24 Volts On	CAN24-6 ¹
53-d	Al-4	Return Line Filter 1 Alarm Switch	0 Volts Off; 24 Volts On	CAN24-2-128
53-e	AI-5	Hydraulic Vacuum Switch	0 Volts Off; 24 Volts On	CAN25-2-16
53-f	Al-6	Hydraulic Fluid High Temperature Switch 185° (Tier 2 and Tier 3 only)	0 Volts Off; 24 Volts On	CAN25-2-32
53-f	AI-6	Cooler Fan Pressure Transducer (Tier 4)	1 Volt at 0 psi; 5 Volts at 7,500 psi	CAN25-2 ¹
53-g	Ground	Hydraulic Fluid Level Sensor	Ground	
53-h	Ground	Fuel Level Sensor	Ground	
53-j	5 Volts	Fuel Level Sensor	5 Volts DC	
53-k	Ground	Hydraulic Fluid Temperature Sensor (Tier 4)	Ground	
53-m	Ground	Cooler Fan Pressure Transducer (Tier 4)	Ground	
53-n	24 Volts	Hydraulic Fluid Level Sensor (S/N 18001082 and newer)	24 Volts	
53-р	Al-7	Hydraulic Fluid Level Sensor (S/N 18001082 and newer)	0 Volts Off; 24 Volts On	
J4		Receptacle – Pump (Controls	
54-A	Ground	Right Track Pump Control – Forward	Ground	
54-B	DO-11	Right Track Pump Control – Forward	See <u>Table 3-3</u> for Values	CAN38-2-4
54-C	Ground	Right Track Pump Control – Reverse	Ground	
54-D	DO-12	Right Track Pump Control – Reverse	See <u>Table 3-3</u> for Values	CAN38-2-8
54-E	Ground	Drum 6 Pump Control – Raise	Ground	
54-F	DO-13	Drum 6 Pump Control – Raise	See <u>Table 3-3</u> for Values	CAN38-2-16
54-G	Ground	Drum 6 Pump Control – Lower	Ground	

Can ID. No.	Function Type	Description	Test Voltage	Packet No.	
54-H	DO-14	Drum 6 Pump Control – Lower	See <u>Table 3-3</u> for Values	CAN38-2-32	
54-K	Ground	Drum 4A Pump Control – Lower	Ground		
54-L	Ground	Drum 4A Pump Control – Raise	Ground		
54-M	DO-17	17 Drum 4A Pump Control –Raise See <u>Table 3-3</u> for Va		CAN38-3-1	
54-N	Ground	Pump Drive Cooler 1	Ground		
54-P	DO-16	Pump Drive Cooler 1	0 Volts Off; 24 Volts On	CAN38-2-128	
54-S	DO-18	Drum 4A Pump Control – Lower	See <u>Table 3-3</u> for Values	CAN38-3-2	
54-T	Ground	Drum 4B Pump Control – Raise	Ground		
54-U	DO-19	Drum 4B Pump Control – Raise	See <u>Table 3-3</u> for Values	CAN38-3-4	
54-V	Ground	Drum 4B Pump Control – Lower	Ground		
54-W	DO-20	Drum 4B Pump Control – Lower	See <u>Table 3-3</u> for Values	CAN38-3-8	
54-X	Ground	Swing 2 (optional) Pump Control – Left	Ground		
54-Z	DO-21	Swing 2 (optional) Pump Control – Left	See <u>Table 3-3</u> for Values	CAN38-3-16	
54-a	Ground	Swing 2 (optional) Pump Control – Right	Ground		
54-b	DO-22	Swing 2 (optional) Pump Control – Right	See <u>Table 3-3</u> for Values	CAN38-3-32	
54-c	Ground	Pump Drive Cooler 2	Ground		
54-d	DO-23	Pump Drive Cooler 2	0 Volts Off; 24 Volts On	CAN38-3-64	
54-e	Ground	Accessory System Proportional Solenoid	Ground		
54-f	DO-24	Accessory System Proportional Solenoid	0 Volts Off; 24 Volts On	CAN38-3-128	
54-g	Ground	Jumper to Node Select 4	Ground		
54-m	NS-4	Node Select Jumper to Ground	0 Volts (With Jumper)		
J6		Receptacle – L	imits		
56-A	Ground	Drum 6 Pressure Sender	Ground		
56-B	DO-7	Drum 6 Pressure Sender	0 Volts Off; 24 Volts On	CAN38-1-64	
56-C	Ground	Drum 4 Pressure Sender	Ground		
56-D	DO-8	Drum 4 Pressure Sender	0 Volts Off; 24 Volts On	CAN38-1-128	
56-E	Ground	Maximum Boom Angle Limit Switch	Ground		
56-F	DO-9	Pump Case Heat Control	0 Volts Off; 24 Volts On	CAN38-2-1	
56-G	Ground	Swing/Travel Alarm	Ground		
56-H	DO-10	Swing/Travel Alarm	0 Volts Off; 24 Volts On	CAN38-2-2	
56-J	DI-8	Maximum Boom Angle Limit Switch	0 Volts Off; 24 Volts On	CAN69-1-128	
56-N	NS-4	Node Select 4 Jumper to Ground	0 Volts (With Jumper)		
56-R	24 Volts	Maximum Boom Angle Limit Switch	24 Volts		
56-U	Ground	Jumper to Node Select 4	0 Volts (With Jumper)		
56-V	5 Volts	Drum 4 Motor Speed Sensor	5 Volts DC		
56-W	Ground	Pump Case Heat Control	Ground		
		Drum 6 Pressure Sender	1 Volt at 0 psi; 5 Volts at 7,500 psi		
56-b	AI-10	Drum 4 Pressure Sender	1 Volt at 0 psi; 5 Volts at 7,500 psi	CAN26-4 ¹	
56-j	Ground	Drum 4 Motor Speed Sensor	Ground		

Can ID. No.	Function Type	Description	Test Voltage	Packet No.
56-n	ENC1A	Drum 4 Motor Speed Sensor	1.2 or 3.2 Volt Not Moving; 2.2 Volts Moving	CAN68-2 ¹
56-p	ENC1B	Drum 4 Motor Speed Sensor	1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	CAN68-2 ²

 ^{1 –} Lower four bits are the most significant bit of the analog value.
 2 – The number in the indicated bank should increase with device rotation and decrease with rotation in opposite direction.

NODE 6 - Drums 2, 4, & 5, and Adapter Frame

Reference Electrical Schematic A06374 - Sheets 10, 19, 20 and 21.

Can ID. No.	Function Type	Description	Test Voltages	Packet No
WN20-A/WNE06-A	24 Volts	From Remote Receiver to Node 7	24 Volts Nominal	
WN20-C/WNE06-C	CANH	Can High Wire Transmission	N/A	
WN20-D/WNE06-D	Ground	From Remote Receiver to Node 7	Ground	
WN20-F/WNE06-F	CANL	Can Low Wire Transmission	N/A	
WN20 formerly WN1	18			
J3		Receptacle – Drum	5 Controls	
63-C	Ground	Drum 5 Brake Solenoid	Ground	
63-D	DO-2	Drum 5 Brake Solenoid	0 Volts Off, 24 Volts On	CAN34-1-2
63-E	Ground	Drum 5 Pawl Out Solenoid	Ground	
63-F	DO-3	Drum 5 Pawl Out Solenoid	0 Volts Off, 24 Volts On	CAN34-1-4
63-G	Ground	Drum 5 Pawl In Solenoid	Ground	
63-H	DO-4	Drum 5 Pawl In Solenoid	0 Volts Off, 24 Volts On	CAN34-1-8
63-J	Ground	Jumper to Node Select 1	Ground	
63-K	NS-1	Node Select 1 Jumper to Ground	0 Volts (With Jumper)	
63-L	NS-2	Node Select 2 Jumper to Ground	0 Volts (With Jumper)	
63-N	Ground	Jumper to Node Select 2	Ground	
63-a	Al-1	Rotating Frame Level Sensor (Pitch)	0 to 10 Volts	CAN8-2 ¹
63-b	Al-2	Rotating Frame Level Sensor (Roll)	0 to 10 Volts	CAN8-4 ¹
63-g	Ground	Rotating Frame Level Sensor	Ground	
63-j	5 Volts	Rotating Frame Level Sensor	5 Volts DC	
J4		Receptacle – Adapter Frame	& Drum 4 Controls	-
64-A	Ground	Rear Adapter Frame Pins Engage Sol.	Ground	
64-B	DO-11	Rear Adapter Frame Pins Engage Sol.	0 Volts Off; 24 Volts On	CAN34-2-4
64-C	Ground	Rear Adapter Frame Pins Disengage Sol.	Ground	
64-D	DO-12	Rear Adapter Frame Pins Disengage Sol.	0 Volts Off; 24 Volts On	CAN34-2-8
64-E	Ground	Front Adapter Frame Pins Engage Sol.	Ground	
64-F	DO-13	Front Adapter Frame Pins Engage Sol.	0 Volts Off; 24 Volts On	CAN34-2-16
64-G	Ground	Front Adapter Frame Pins Disengage Sol.	Ground	
64-H	DO-14	Front Adapter Frame Pins Disengage Sol.	0 Volts Off; 24 Volts On	CAN34-2-32
64-U	DO-19	Drum 4 Pawl In Motor	0 Volts Off; 24 Volts On	CAN34-3-4
64-V	Ground	Drum 4 Pawl Motor	Ground	
64-W	64-W DO-20 Drum 4 Pawl Out Motor 0 Volts Off; 24 Volts		0 Volts Off; 24 Volts On	CAN34-3-8
64-X	64-X Ground Drum 4 Motor Control 1 Ground		Ground	
64-Z DO-21 Drum 4 Motor Control 1 Se		See <u>Table 3-3</u> for Values	CAN34-3-16	
64-a	Ground Drum 4 Motor Control 2 Ground		Ground	
64-b	b DO-22 Drum 4 Motor Control 2 See <u>Table 3-3</u> for Values		CAN34-3-32	
64-c	Ground	Drum 4 Brake Solenoid	Ground	
64-d	DO-23	Drum 4 Brake Solenoid	0 Volts Off; 24 Volts On	CAN34-3-64

Can ID. No.	Function Type	Description	Test Voltages	Packet No.
64-g	Ground	Jumper to Node Select 1	Ground	
64-h	NS-1	Node Select 1 Jumper to Ground	Node Select 1 Jumper to Ground 0 Volts (With Jumper)	
64-j	NS-2	Node Select 2 Jumper to Ground	0 Volts (With Jumper)	
64-r	Ground	Jumper to Node Select 2	Ground	_
J6		Receptacle – Drum	2 Controls	
66-A	Ground	Drum 2 Motor Control 1	Ground	
66-B	DO-7	Drum 2 Motor Control 1	See <u>Table 3-3</u> for Values	CAN34-1-64
66-C	Ground	Drum 2 Motor Control 2	Ground	
66-D	DO-8	Drum 2 Motor Control 2	See <u>Table 3-3</u> for Values	CAN34-1-128
66-E	Ground	Drum 2 Brake Solenoid	Ground)
66-F	DO-9	Drum 2 Brake Solenoid	0 Volts Off; 24 Volts On	CAN34-2-1
66-G	Ground	Drum 2 Minimum Bail Limit Switch	Ground	
66-H	DO-10	Drum 2 Minimum Bail Limit Switch	0 Volts Off, 24 Volts On	CAN34-2-2
66-J	DI-8	Drum 2 Minimum Bail Limit Switch	0 Volts Off, 24 Volts On	CAN61-1-128
66-K	NS-1	Node Select 1 Jumper to Ground	0 Volts (With Jumper)	
66-L	NS-2	Node Select 2 Jumper to Ground	0 Volts (With Jumper)	
66-U	Ground	Jumper to Node Select 2	Ground	
66-V	5 Volts	Drum 2 and Drum 7 Motor Speed Sensor	5 Volts DC	
66-W	Ground	Jumper to Node Select 1	Ground	
66-Z	Ground	Drum 2 Motor Speed Sensor	Ground	
66-j	Ground	Drum 7 Motor Speed Sensor	Ground	
66-n	66-n ENC-1A Drum 7 Motor Speed Sensor		1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	CAN62-2 ²
66-p	ENC-1B	Drum 7 Motor Speed Sensor	1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	CAN62-2 ²
66-r	ENC-2A	Drum 2 Motor Speed Sensor	1.2 or 3.2 Volts Not Moving; .2 Volts Moving	CAN62-4 ²
66-s	ENC-2B	Drum 2 Motor Speed Sensor	1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	CAN62-4 ²

¹ – Lower four bits are the most significant bit of the analog value.

² – The number in the indicated bank should increase with device rotation and decrease with rotation in opposite direction.

NODE 7 - Swing, Travel and Auto Lube

Reference Electrical Schematic A06374 - Sheets 11, 19 and 21.

Can ID. No.	Function Type	Description	Test Voltages	Packet No.
WN12-A/WNE08-A	24 Volts	From Node 6 to Node 8	24 Volts Nominal	
WN12-C/WNE08C	CANH	Can High Wire Transmission	N/A	
WN12-D/WNE08-D	Ground	From Node 6 to Node 8	Ground	
WN12-F/WNE08-F	CANL	Can Low Wire Transmission	N/A	
J4		Receptacle – Swing Syste	em and Auto Lube	
74-A	Ground	Swing Brake Solenoid	Ground	
74-B	DO-11	Swing Brake Solenoid	0 Volts Off; 24 Volts On	CAN36-2-4
74-C	Ground	Swing Lock Out Solenoid	Ground	
74-D	DO-12	Swing Lock Out Solenoid	0 Volts Off; 24 Volts On	CAN36-2-8
74-E	Ground	Swing Lock In Solenoid	Ground	
74-F	DO-13	Swing Lock In Solenoid	0 Volts Off, 24 Volts On	CAN36-2-16
74-G	Ground	Travel Two Speed Solenoid	Ground	
74-H	DO-14	Travel Two Speed Solenoid	0 Volts Off, 24 Volts On	CAN36-2-32
74-T	Ground	Travel Brake Solenoid	Ground	
74-U	DO-19	Travel Brake Solenoid	0 Volts Off; 24 Volts On	CAN36-3-4
74-V	Ground	Track Auto Lube Pump	Ground	
74-W	DO-20	Track Auto Lube Pump	0 Volts Off; 24 Volts On	CAN36-3-8
74-X	Ground	Swing Bearing Auto Lube Pump	Ground	
74-Z	DO-21	Swing Bearing Auto Lube Pump	0 Volts Off; 24 Volts On	CAN36-3-16
74-g	Ground	Jumper to Node Select 1	Ground	
74-h	NS-1	Node Select 1 Jumper to Ground	0 Volts (With Jumper)	
74-k	NS-3	Node Select 3 Jumper to Ground	0 Volts (With Jumper)	
74-r	Ground	Jumper to Node Select 3	Ground	
J6		Receptacle – Swir	ng System	
76-A	Ground	Swing Left Pressure Sender	Ground	
76-B	DO-7	Swing Left Pressure Sender	24 Volts	CAN36-1-64
76-C	Ground	Swing Right Pressure Sender	Ground	
76-D	DO-8	Swing Right Pressure Sender	24 Volts	CAN36-1-128
76-F	DO-9	Swing Brake Pressure Sender	24 Volts	
76-H	DO-10	Accessory System Hydraulic Pressure Switch	0 Volts Off; 24 Volts On	CAN36-2-2
76-J DI-8		Accessory System Hydraulic Pressure Switch	0 Volts Off; 24 Volts On	CAN65-1-128
76-K NS-1		Node Select 1 Jumper to Ground	0 Volts (With Jumper)	
76-M NS-3 Node Select 3 Jumper		Node Select 3 Jumper to Ground	0 Volts (With Jumper)	
76-U Ground Jumper to Node Select 3		Ground		
76-V	76-V 5 Volts Swing Motor Speed Sensor 5 Volts DC		5 Volts DC	
76-W Ground Jumper to Node Select 1 Gro		Ground		
76-Z Ground Swing Brake Pressure		Swing Brake Pressure Sender	Ground	
76-a	AI-9	Swing Left Pressure Sender	1 Volt at 0 psi; 5 Volts at 7,500 psi	CAN18-2 ¹

Can ID. No.	Function Type	Description	Test Voltages	Packet No.
76-b	AI-10	Swing Right Pressure Sender	1 Volt at 0 psi; 5 Volts at 7,500 psi	CAN18-4 ¹
76-c	AI-11	Swing Brake Pressure Sender	1 Volt at 0 psi; 5 Volts at 750 psi	CAN18-6 ¹
76-j	Ground	Swing Motor Speed Sensor	Ground	
76-n	ENC-1A	Swing Motor Speed Sensor CH A	1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	CAN64-2 ²
76-p	ENC-1B	Swing Motor Speed Sensor CH B	1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	CAN64-2 ²

¹ – Lower four bits are the most significant bit of the analog value.

² – The number in the indicated bank should increase with device rotation and decrease with rotation in opposite direction.

NODE 8 - Drum 1 and Drum 6

Reference Electrical Schematic A06374 - Sheets 12, 19 and 21.

Can ID. No.	Function Type	Description	Test Voltage	Packet No
WN18-A/WN12-A	24 Volts	From Node 7 to Bin Node	24 Volts Nominal	
WN18-C/WN12-C	CANH	Can High Wire Transmission	N/A	
WN18-D/WN12-D	Ground	From Node 7 to Bin Node	Ground	
WN18-F/WN12-F	CANL	Can Low Wire Transmission	N/A	
J4		Receptacle – Drum	n 6 Controls	
84-A	Ground	Drum 6 Motor Control	Ground	
84-B	DO-11	Drum 6 Motor Control	See <u>Table 3-3</u> for Values	CAN39-2-4
84-C	Ground	Drum 6 Brake Solenoid	Ground	
84-D	DO-12	Drum 6 Brake Solenoid	0 Volts Off; 24 Volts On	CAN39-2-8
84-F	DO-13	Drum 6 Pawl In Motor	0 Volts Off, 24 Volts On	CAN39-2-16
84-G	Ground	Drum 6 Pawl Motor	Ground	
84-H	DO-14	Drum 6 Pawl Out Motor	0 Volts Off; 24 Volts On	CAN39-2-32
84-g	Ground	Jumper to Node Select 1	Ground	
84-h	NS-1	Node Select 1 Jumper to Ground	0 Volts (With Jumper)	
84-m	NS-4	Node Select 4 Jumper to Ground	0 Volts (With Jumper)	
84-r	Ground	Juniper to Node Select 4	Ground	
J6		Receptacle – Drum	1 Controls	
86-A	Ground	Drum 1 Motor Control 1	Ground	
86-B	DO-7	Drum 1 Motor Control 1	See <u>Table 3-3</u> for Values	CAN39-1-64
86-C	Ground	Drum 1 Motor Control 2	Ground	
86-D	DO-8	Drum 1 Motor Control 2	See <u>Table 3-3</u> for Values	CAN39-1-128
86-E	Ground	Drum 1 Brake Solenoid	Ground	
86-F	DO-9	Drum 1 Brake Solenoid	0 Volts Off; 24 Volts On	CAN39-2-1
86-G	Ground	Drum 1 Minimum Bail Limit Switch	Ground	
86-H	DO-10	Drum 1 Minimum Bail Limit Switch	0 Volts Off; 24 Volts On	CAN39-2-2
86-J	DI-8	Drum 1 Minimum Bail Limit Switch	0 Volts Off; 24 Volts On	CAN71-1-128
86-K	NS-1	Node Select 1 Jumper to Ground	0 Volts (With Jumper)	
86-N	NS-4	Node Select 4 Jumper to Ground	0 Volts (With Jumper)	
86-U	Ground	Jumper to Node Select 4	Ground	
86-V	5 Volts	Drum 1 and Drum 6 Motor Speed Sensor	5 Volts DC	
86-W	Ground	Jumper to Node Select 1	Ground	
86-Z	Ground	Drum 1 Motor Speed Sensor	Ground	
86-j Ground		Drum 6 Motor Speed Sensor	Ground	
86-n ENC-1A Drum 1 Motor Speed Se		Drum 1 Motor Speed Sensor CH A	1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	CAN70-2 ²
86-p	86-p ENC-1B Drum 1 Motor Speed Sensor CH B		1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	
86-r	ENC-2A Drum 6 Motor Speed Sensor CH A		1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving CAN70-4	
86-s	ENC-2B	Drum 6 Motor Speed Sensor CH B	1.2 or 3.2 Volts Not Moving; 2.2 Volts Moving	CAN70-4 ²

 $^{^2}$ – The number in the indicated bank should increase with device rotation and decrease with rotation in opposite direction.

THIS PAGE INTENTIONALLY LEFT BLANK

NODE 9 - MAX-ER

Reference Electrical Schematic A06374 - Sheets 13, 19 and 21.

Can ID. # /Connector #	Function Type	Description	Test Voltage	Packet No.
WN14-A/WN14-A	24 Volts	From Node 5 to Remote Receiver	24 Volts Nominal	
WN14-C/WN14-C	CANH	Can High Wire Transmission	N/A	
WN14-D/WN14-D	Ground	From Node 5 to Remote Receiver	Ground	
WN14-F/WN14-F	CANL	Can Low Wire Transmission	N/A	
J3		Receptacle – MAX-El	R Controls	
93-A	Ground	MAX-ER Right Side CWT Carrier Load PIn	Ground	
93-B	24 Volts	W48 Shorting Plug (MAX-ER not used)	24 Volts Nominal	
93-D	DO-2 CWT Left Cylinder - Retract Solenoid 0 Volts Off, 24 Volts On		CAN37-1-2	
93-F	DO-3	Counterweight Limit Switch	0 Volts Off, 24 Volts On	CAN37-1-4
93-H	DO-4	CWT Right Cylinder - Retract Solenoid	0 Volts Off, 24 Volts On	CAN37-1-8
93-J	Ground	Jumper to Node Select 2	Ground	
93-L	NS-2	Node Select 2 Jumper to Ground	0 Volts (With Jumper)	
93-M	NS-3	Node Select 3 Jumper to Ground	0 Volts (With Jumper)	
93-N	Ground	Jumper to Node Select 3	Ground	
93-P	DO-6	CWT Right Cylinder - Extend Solenoid	0 Volts Off, 24 Volts On	CAN37-1-32
93-R	DO-5	CWT Left Cylinder - Extend Solenoid	0 Volts Off, 24 Volts On	CAN37-1-16
93-T	DI-3	DI-3 Counterweight Limit Switch - Right Side 0 Volts Off, 24 Volts On		CAN67-1-4
93-W	DI-4	Counterweight Limit Switch - Left Side	0 Volts Off, 24 Volts On	CAN67-1-8
93-X	24 Volts	MAX-ER Right Side CWT Carrier Load Pln	24 Volts	
93-Z	24 Volts	MAX-ER Left Side CWT Carrier Load PIn	24 Volts	
93-a	Al-1	Remote Active	24 Volts Nominal	CAN20-2-16
93-b	Al-2	CWT Pendant Cylinder Remote-Lower	0 Volts Off, 24 Volts On	CAN20-2-32
93-c	Al-3	CWT Pendant Cylinder Remote-Raise	0 Volts Off, 24 Volts On	CAN20-6 ¹
93-d	Al-4	MAX-ER Right Side CWT Carrier Load Pln	0.8 Volts Min.; 8.0 Volts Max.	CAN20-8 ¹
93-е	AI-5	MAX-ER Left Side CWT Carrier Load Pln	0.8 Volts Min.;8.0 Volts Max.	CAN21-2 ¹
93-g	Ground	MAX-ER Left Side CWT Carrier Load PIn	Ground	
93-h	Ground	Counterweight Limit Switch Ground	Ground	
93-k	Ground	Counterweight Limit Switch Ground	Ground	
93-m	Ground	MAX-ER Backhitch Load Pin	Ground	
93-р	Al-7	W48 Shorting Plug (MAX-ER not used)	0 Volts Off, 24 Volts On	CAN21-2-64
93-r Al-8		MAX-ER Backhitch Load Pin	No Load 1.5 Volts	CAN21-8 ¹
93-s	24 Volts	MAX-ER Backhitch Load PIn	24 Volts	
16		Receptacle – MAX-El	R Controls	1
96B DO-7 Power to MAX-ER Re		Power to MAX-ER Remote Control	0 Volts Off, 24 Volts On CAN3	
96D	96D DO-8 Power to MAX-ER Remote Control 0 Volts Off, 24 Volts On		CAN37-1-12	
96F	DO-9	Power to MAX-ER Remote Control	0 Volts Off, 24 Volts On	CAN37-2-1
96H	DO-10	Power to MAX-ER Remote Control	0 Volts Off, 24 Volts On	CAN37-2-2

Can ID. # /Connector #	nnector# Type Description		Test Voltage	Packet No.
96L	NS-2	Node Select 2 Jumper to Ground	0 Volts (With Jumper)	
96M	NS-3	Node Select 3 Jumper to Ground	0 Volts (With Jumper)	
96U	Ground	Jumper to Node Select 2	Ground	
96W	Ground	Jumper to Node Select 3	Ground	
		MAX-ER Remote	Controls	
8SR/W51-A		Power		
8SR/W51-V		Power		
54LA/W51-B		Left Front Jack - Extend		
54LB/W51-C		Left Front Jack - Retract		
54RA/W51-D		Right Front Jack - Extend		>
54RB/W51-E		Right Front Jack - Retract		
54LC/W51-F		Left Rear Jack - Extend		
54LD/W51-G		Left Rear Jack - Retract		
54RC/W51-H		Right Rear Jack - Extend		
54RD/W51-J		Right Rear Jack - Retract		
54AC/W51-KW		All Jacks - Extend		
54BD/W51-LX		All Jacks - Retract		
58RD/W51-M		Right Steering Pins - Disengage		
58RE/W51-N		Right Steering Pins - Engage		
58LD/W51-P		Left Steering Pins - Disengage		
58LE/W51-Q		Left Steering Pins - Engage		
59CC/W51-R		Steering Position - Counterclockwise		
59CW/W51-S		Steering Position - Clockwise		
89N3/W51-T		Counterweight - Raise		
89K3/W51-U		Counterweight - Lower		

¹ – Lower four bits are the most significant bit of the analog value.

NODE 20 - Boom Block Up, Block Sensor, & Limits

Reference Electrical Schematic A06374 - Sheets 14 and 22.

Can ID. No.	Function Type	Description	Test Voltage	Packet No.
J1		Receptacle - Can In		
01-A	24 Volts	Can Bus System (From RCL Receiver)	24 Volts Nominal	
01-B	AI-NS	Node Select Al-NS	Node Select Jumper to Ground	
01-C	CANH	Can High Wire Transmission (From RCL Receiver) N/A	
01-D	Ground	Can System Bus (From RCL Receiver)	Ground	
01-E	Ground	Node Select Ground	Jumper to AI-NS	
01-F	CANL	Can Low Wire Transmission (From RCL Receiver)	N/A	
2		Receptacle – Upper Block Up		
02-A	24 Volts	Block Up Limit Boom Upper Point	24 Volts Nominal	
02-B	DI-2	Block Up Limit Boom Upper Point	0 Volts Off; 24 Volts On	CAN136-6-128
3		Receptacle – Lower Block Up		
03-A	24 Volts	Block Up Limit Boom Lower Point	24 Volts Nominal	
03-B	DI-1	Block Up Limit Boom Lower Point	0 Volts Off; 24 Volts On	CAN136-6-64
4		Receptacle – Can Out		
04-A	24 Volts	Can Bus System	24 Volts Nominal	
04-C	CANH	Can High Wire Transmission	N/A	
04-D	Ground	Can System Bus	Ground	
04-E	DI-ID	To Jib Butt Cable Reel	24 Volts Nominal	CAN 136-6-4
04-F	CANL	Can Low Wire Transmission	N/A	
5		Receptacle - Block Level Sensor		
05-A	24 Volts	Load Pin 1 - Lower Boom Point	24 Volts Nominal	
05-B	AI-1	Load Pin 1 - Lower Boom Point	0.47 V No Load; 5.7 V Full Load	
05-D	Ground	Load Pin 1 - Lower Boom Point	Ground	
6		Receptacle - Block Level Sensor		
06-A	24 Volts	Load Pin 2 - Lower Boom Point W/Tandem Drum	24 Volts Nominal	
06-B	AI-2	Load Pin 2 - Lower Boom Point W/Tandem Drum	0.47 V No Load; 5.7 V Full Load	
06-D	Ground	Load Pin 2 - Lower Boom Point W/Tandem Drum	Ground	
8		Wind Speed Indicator		
08-A	Al-3	Wind Speed Sensor	0.05 to 16 Volts DC	
08-B	Ground	Wind Speed Sensor	Ground	
9		Receptacle – Maximum Jib Angle Limit		
09-A	24 Volts	Maximum Jib Angle Limit	24 Volts Nominal	
09-B	DI-6	Maximum Jib Angle Limit	0 Volts Off; 24 Volts On	CAN136-6-32
10		Receptacle – Maximum Jib Angle Working Lim		
010-A	24 Volts	Maximum Jib Angle Working Limit	24 Volts Nominal	
010-B	DI-5	Maximum Jib Angle Working Limit	0 Volts Off; 24 Volts On	CAN136-6-16
11		Receptacle – Minimum Jib Angle Limit	,	1 2 2 2 2
011-A	24 Volts	Minimum Jib Angle Limit	24 Volts Nominal	
011-B	DI-4	Minimum Jib Angle Limit	0 Volts Off; 24 Volts On	CAN136-6-8
		Boom Angle Indicator		0
Vire 1	5 Volts	Boom Angle Indicator	5 Volts Nominal	
/ire 2	Signal	Boom Angle Indicator	Between 0 and 5 Volts	
/ire 3	Ground	Boom Angle Indicator	Ground	

NODE 21 - Luffing Jib, Block Up, Block Sensor, Limits

Reference Electrical Schematic A06374 - Sheets 14 and 23.

Can ID. No.	Function Type	Description	Test Voltage	Packet No.
J1		Receptacle - Can In		
211-A	24 Volts	Can Bus System (From Jib Butt)	24 Volts Nominal	
211-B	AI-NS	Node Select AI	Node Select Jumper to Ground	
211-C	CANH	Can High Wire Transmission (From Jib Butt)	N/A	
211-D	Ground	Can System Bus (From Jib Butt)	Ground	
211-E	Ground	Node Select Ground	Jumper to AI-NS	
211-F	CANL	Can Low Wire Transmission (From Jib Butt)	N/A	
J2		Receptacle – Upper Block Up		
212-A	24 Volts	Block Up Limit Luffing (#44 or #79A) or Fixed Jib Upper Point	24 Volts Nominal	
212-B	DI-2	Block Up Limit Luffing (#44) or Fixed Jib Upper Point	0 Volts Off; 24 Volts On	CAN132-6-128*
212-B	DI-2	Block Up Limit Luffing (#79A) or Fixed Jib Upper Point	0 Volts Off; 24 Volts On	CAN135-6-128*
J3		Receptacle – Lower Block Up		
213-A	24 Volts	Block Up Limit Luffing (#44 or #79A) or Fixed Jib Lower Point	24 Volts Nominal	
213-B	DI-1	Block Up Limit Luffing (#44) or Fixed Jib Lower Point	0 Volts Off; 24 Volts On	CAN132-6-64*
213-B	DI-1	Block Up Limit Luffing (#79A) or Fixed Jib Lower Point	0 Volts Off; 24 Volts On	CAN135-6-64*
J4		Receptacle - Can Out		
214-A	24 Volts	Can Bus System	24 Volts Nominal	
214-C	CANH	Can High Wire Transmission	N/A	
214-D	Ground	Can System Bus	Ground	
214-E	DI-ID	Last Node Terminating Plug	24 Volts Nominal	
214-F	CANL	Can Low Wire Transmission	N/A	
J5		Receptacle - Lower Jib		
215-A	24 Volts	Jib Lower Point	24 Volts Nominal	
215-B	Al-1	Jib Lower Point	0 Volts Off; 24 Volts On	
215-D	Ground	Jib Lower Point	Ground	
J8		Wind Speed Indicator		
218-A	AI-6	Wind Speed Sensor	.05 to 16 Volts DC	
218-B	Ground	Wind Speed Sensor	Ground	
		Jib Angle Indicator		
Wire 1	5 Volts	Jib Angle Indicator	5 Volts Nominal	
Wire 2	Signal	Jib Angle Indicator	Between 0 and 5 Volts	
Wire 3	Ground	Jib Angle Indicator	Ground	

^{*} Packet number depends on specific attachment used.

NODE 0 - Power, Engine Controls, and Diagnostics Reference Electrical Schematic A06374 - Sheet 15

Receptacle/ CAN/ID	Wire No.	Function Type	Description	Test Voltage
J1			Connector – 40 Pin	
P11	3	24 Volts	Ignition Signal	24 Volts Nominal
P12	0102	Ground	Can System Bus	Ground
P13	0103	DO-1	Ether Relay Coil - Positive	24 Volts
P14	0104	24 Volts	ECM Power Relay Coil - Positive	24 Volts
P17	0107	24 Volts	Air Conditioning Clutch Relay Coil - Positive	24 Volts Nominal
P110	0110	24 Volts	MS1/MS2 Start Relay Coil - Positive	24 Volts Nominal
P111	0	Ground	Battery	Ground
P112	0112	Ground	Can System Bus	Ground
P114	0114	Ground	ECM Power Relay Coil - Negative	Ground
P117	0117	Ground	Air Conditioning Clutch Relay Coil - Negative	Ground
P119	0119	Ground	Ether Relay Coil - Negative	Ground
P120	0120	Ground	MS1/MS2 Start Relay Coil - Negative	Ground
P121	ОС	Ground	Can System Bus Output Wire	Ground
P122	0122	Ground	Can Power Relay Coil - Negative	Ground
P129	RS232GND	Ground	Common	Ground
P130	RS232PE	Signal	Program Enable	N/A
P131	8C	24 Volts	Can Power Relay Output	24 Volts Nominal
P132	0132	24 Volts	Can Power Relay Coil - Positive	24 Volts Nominal
P133	3	24 Volts	Ignition Signal	24 Volts Nominal
P136	J1939H	Signal	Communication – High	N/A
P137	J1939L	Signal	Communication – Low	N/A
P139	RS232TX	Signal	Program Transmit	N/A
P140	RS232RX	Signal	Program Receive	N/A

Abbreviations

The following abbreviations are used in this section:

AC	=	Alternating Current	I/O	=	Input/Output
A/C	=	Air Conditioning	L.E.D.	=	Light Emitting Diode
Al	=	Analog Input	Max.	=	Maximum
AO	=	Analog Output	Min.	=	Minimum
CAN	=	Controller Area Network	MS	=	Motor Starter
CANH	=	Controller Area Network - High	N/A	=	Not Applicable
CANL	=	Controller Area Network - Low	N/C	=	No Connection
CHA or CHB	=	Channel A or B	NO	=	Number
DC	=	Direct Current	NS	=	Node Select
DI	=	Digital Input	Opt.	=	Optional
DO	=	Digital Output	psi	=	Pressure
EC	=	Encoder Control	RCL	=	Rated Capacity Indicator/Limiter
ENC	=	Encoder Number Count	V	=	Volt or Volts
FCN	=	Front Console Node	VDC	=	Volts Direct Current
GND	=	Ground	W	=	Wire
ID	=	Identification			

CHECKING ELECTRICAL INPUTS/OUTPUTS

See Figure 3-2 for the following procedure

Troubleshoot components on main display, system diagnostic screen first. Any further testing could be performed with in-line test boards at universal nodes or Manitowoc Unit Tester at all nodes. The in-line test boards or Manitowoc Unit Tester can be ordered from your Manitowoc dealer.

Node number and pin numbers for each component to be checked is contained in node Test Volt tables.

To test a problem component at a universal node with in-line test board:

- 1. Shutdown engine and turn engine key switch to **stop**.
- Determine universal node and keyed connector (W3, W4, or W6) where problem component is located.
- Remove cable to correct connector and insert the keyed in-line test board between cable and universal node.
- At least one cable to node computer must remain connected when testing.
- **5.** Determine the wire number(s) of item to be checked.
- 6. To test for a voltage:
 - Close knife switch across test terminal on board.
 - Select voltage on meter.
 - Connect meter negative lead to problem component ground terminal on test board.
 - Connect meter positive lead to problem component signal terminal on test board.
 - Enable test component and check voltage reading on meter.

NOTE: A meter reading of 9 volts can indicate an output is turned on and is an open circuit. A meter reading of 3 volts can indicate that a circuit is turned off and is an open circuit.

7. To test for amperes:

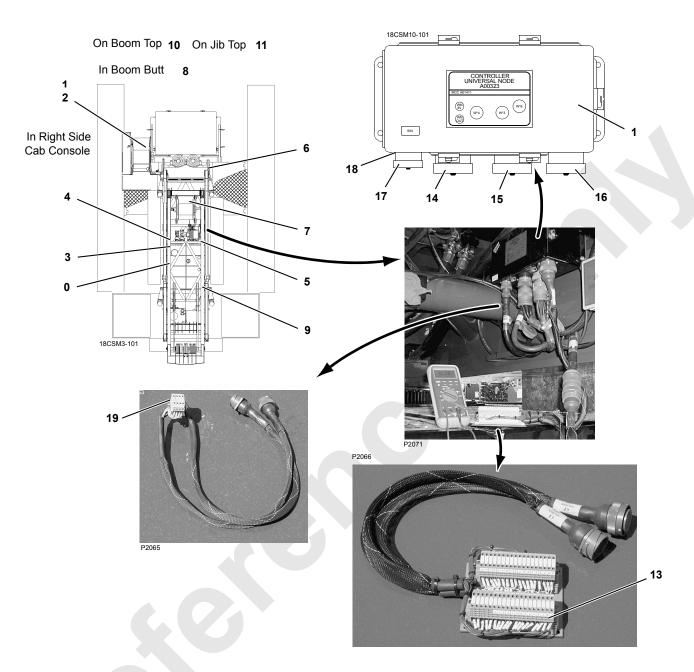
- Open knife switch across test terminal.
- Select amperes on meter.
- Connect meter leads across test board problem component terminal.
- Enable test component and check ampere reading on meter.

Test a for a communication problem on a universal node with communication in-line test board:

- **1.** Engine must be off and engine key switch in *run* position, with all brakes and locks engaged.
- Access desired node to install communication in-line test board.
- 3. Remove cable from node at W1 or W7 connector.
- Connect the communication in-line test board between cable and universal node connector.
- Check between terminals C (CAN high) to D (ground) or F (CAN low) to D (ground).
- A reading of 1 to 3 volts indicates normal communication between nodes.
- **7.** A reading of a steady 0 or 2.5 volts can indicate no communication on CAN-Bus.

Control Handle Voltages

Troubleshooting control handles can be performed *only* on digital display screen. See individual component screens and CAN-bus screen in Crane Diagnostics topic in this section.


Enable the test control handle and check the handle voltage on system screen.

Voltages outside the listed range may indicate a problem with the control handle, electrical circuit, or electrical components.

Handle center switch (CS) status is also shown on system digital display screen.

Handle Controller	Acceptable Voltage (DC)
Swing	Left 2.4 To 0.5 Volts
	Right 2.6 To 4.5 Volts
Boom Hoist	Raise 2.4 To 0.5 Volts
	Lower 2.6 To 4.5 Volts
Main Hoist 1	Raise 2.4 To 0.5 Volts
	Lower 2.6 To 4.5 Volts
Main Hoist 2	Raise 2.4 To 0.5 Volts
	Lower 2.6 To 4.5 Volts
Whip Line Hoist	Raise 2.6 To 4.5 Volts
	Lower 2.4 To 0.5 Volts
Mast Hoist	Raise 2.6 To 4.5 Volts
	Lower 2.4 To 0.5 Volts
Luffing Jib Hoist	Raise 2.4 To 0.5 Volts
	Lower 2.6 To 4.5 Volts
Right and Left Travel	Forward 2.6 To 4.5 Volts
	Reverse 2.4 To 0.5 Volts
Engine Hand Throttle	Low Idle 0.5 Volts
	High Idle 4.5 Volts
Engine Foot Throttle	Low Idle 2.9 To 3.0 Volts
(Not Shown)	High Idle 0.9 To 1.0 Volts

ltem	Description	Item	Description
0	Node-0 Engine Node	10	Node-20 At Boom Top
1	Node-1 Master Node in Front Console	11	Node-21 At Jib Top
2	Node-2 In Right Side Console	12	Universal Node Controller (3 through 9)
3	Node-3 Left Side of Crane in Machinery Enclosure	13	Node In-line Test Board (3 Separate Boards)
4	Node-4 Left Side of Crane in Machinery Enclosure	14	W4 Connector - 110 Degree Key
5	Node-5 Right Side of Crane in Machinery Enclosure	15	W3 Connector - Zero Degree Key
6	Node-6 Right Front Side of Rotating Bed	16	W6 Connector - 80 Degree Key
7	Node-7 In Swivel Area	17	J1 Connector - Communication In
8	Node-8 In Boom Butt	18	J7 Connector - Communication Out
9	Node-9 MAX-ER At Rear of Rotating Bed	19	Communication In-line Test Board (1 Board)

FIGURE 3-2

THIS PAGE INTENTIONALLY LEFT BLANK

DIELECTRIC GREASE

The following figures show the proper application of dielectric grease on J - tech type connectors.

Dielectric grease is need when assembling J - tech type connectors. A bead of grease needs to be applied on O-ring and face of the socket (female) connector **and only on the O-ring for a pin (male) connector.**

FIGURE 3-3

The size of the grease bead on the O-ring is as follows:

- On a 3 pin connector a 1/16 inch (1,59 mm) bead is required.
- On a 24 pin connector a 1/8 inch (3,18 mm) bead is required.
- On a 37 pin connector a 3/16 inch (4,76 mm) bead is required.

FIGURE 3-4

Place a small amount of grease on your finger for the application on the connector's face. Wipe your finger across the face leaving grease inside the socket holes and less than 0.001 inch (0,025 mm) on the connector's face. This helps assure that water will be kept out of the connectors and keep the pins from fretting.

FIGURE 3-5

DIGITAL DISPLAY

The digital display and scroll up/down rocker (see Special Controls in this section) allow the operator to monitor operating conditions screen, operating limits screen, or system faults screen.

To display one of the above screens, depress the top or bottom of the digital display screen selector to scroll up or down through the display readings. Continue to scroll up or down until desired screen is displayed.

Crane Operating Conditions

<u>Table 3-5</u> lists operating conditions that are displayed and the normal operating range of each item. The current status of operating conditions are displayed in the screen shown in <u>Figure 3-6</u>.

ENGINE SPEED	2,200 RPM
BOOM ANGLE	66. 0 DEG
LUFFING JIB ANGLE	00. 0 DEG
BOOM TO LUFF ANGLE	000.0 DEG

FIGURE 3-6

The engine screen (Figure 3-7) displays the following information.

FUELLEVEL	100%
OIL PRESSURE	50 PSI
COOLANT TEMP	150 DEG
ENGINE HOURS	1800

FIGURE 3-7

The engine diagnostics screen (<u>Figure 3-8</u>) displays engine faults. See Engine Diagnostics in section 7 of this manual for information on fault codes.

FIGURE 3-8

The mast angle, battery voltage, and crane level screen (Figure 3-9) displays the following information.

MAST ANGLE	DEG 000
BATTERY VOLTAGE	V
TILT RIGHT	DEG 000IN 00
TILT FRONT	DEG 000 IN 00

FIGURE 3-9

On crane Serial Numbers 18001081 and older, the wind speed and pump drive screen (<u>Figure 3-10</u>) displays the current steady wind speed, maximum gust wind speed, and pump drive operating conditions.

MAX WIND SPEED resets when crane power is off.

Pump drive operating conditions are provided only on current production cranes (pump drives with a circulating oil system).

10 MPH
20 MPH
160 DEG
25 PSI

FIGURE 3-10

On crane Serial Number 18001082 and newer, the hydraulic tank fluid level, wind speed, and pump drive screen (Figure 3-11) displays the hydraulic tank fluid level, the current steady wind speed or maximum gust wind speed (in parenthesis, and pump drive operating conditions.

- For hydraulic tank level: 0% = empty; 100% = full cold; 110% is full hot
- MAX WIND SPEED resets when crane power is off


HYD TANK FLUID LEVEL	100 %
CURRENT (MAX) WIND SPEED	20 MPH
PUMP DRIVE TEMP	160 DEG
PUMP DRIVE PRESSURE	25 PSI

FIGURE 3-11

Operating Limits

Table 3-6 lists operating limits which can be displayed.

When one or more operating limit is reached, the operating limit alert (yellow light and buzzer in cab) turns on to warn the operator. Scroll to the crane faults/limits display screen. The crane faults/limits screen (Figure 3-12) automatically scrolls through the active faults/limits, stopping at each for approximately three seconds.

FIGURE 3-12

The operating limit alert turns off when the cause of limit is corrected. Each active limit reached during operation is retained in memory, until two things happen:

- 1. Name of limit appears on display at least once
- 2. Cause of limit is corrected

For this reason, it is normal for the inactive limits to appear when you scroll to the operating limit group, even when the operating limit alert is off.

To erase the inactive limits, scroll to the operating limit group. Wait until the display scrolls through the name of each limit. Inactive limits will be erased automatically. If the alert is on, only the names of active limits will remain.

NO FAULT appears on the display (<u>Figure 3-13</u>) when no limits have been reached.

CRANE FAULTS/LIMITS OPERATING LIMIT- NO FAULT

FIGURE 3-13

System Faults

Table 3-7 lists system faults which can be displayed.

When one or more system fault occurs, the system fault alert (red light and beeper in cab) turns on to warn the operator. Scroll to the crane faults/limits screen. The screen (Figure 3-14) automatically scrolls through the active faults/limit, stopping at each for approximately three seconds.

CRANE FAULTS/LIMITS
SYSTEM FAULT- BOOM ANGLE SEND

FIGURE 3-14

The system fault alert turns off when the cause of each fault is corrected. Each active fault that has occurred during operation is retained in memory, until two things happen:

- 1. Name of fault appears on display at least once
- 2. Cause of fault is corrected

For this reason, it is normal for the names of inactive faults to appear when you scroll to the system fault group, even when the system fault alert is off.

To erase the names of inactive faults, scroll to the system fault group. Wait until the display scrolls through the name of each fault. Inactive faults will be erased automatically. If the alert is on, only the names of active faults will remain.

NO FAULT appears on the display (<u>Figure 3-15</u>) when there are no faults.

CRANE FAULTS/LIMITS SYSTEM FAULTS- NO FAULT

FIGURE 3-15

Table 3-5 Operating Conditions

Listed below are the operating conditions which can be viewed on the digital display.

Unit of Measure	Operating Range			
Normal Operating Conditions				
The operating conditions listed below are displayed by scrolling up or down with the digital display selector.				
RPM	1,050 rpm low idle; 1,800 rpm high idle.			
DEG	Degrees boom is positioned above horizontal.			
DEG	Degrees luffing jib is positioned above horizontal.			
DEG	Degrees between centerline of boom and centerline of luffing jib.			
%	Indicates 0-100% of fuel remaining in tank.			
PSI	Indicates engine oil pressure when operating.			
DEG F	Indicates temperature of coolant in engine.			
HOURS	Indicates total number of hours the engine has been run.			
_	Indicates engine fault codes and engine troubleshooting.			
DEG	Degrees live mast is positioned above transport position, which is 0°			
V Indicates crane battery voltage.				
DEG/IN First number is angle (+ or - degrees) that crane is out of level in indicate direction from horizontal. Second number is (inches) of blocking to level of in required direction.				
FLUID LEVEL % Indicates hydraulic tank fluid level in % full.				
ED MPH Indicates current steady wind speed.				
MPH	Indicates maximum gust wind speed.			
DEG F	indicates temperature of oil in pump drive.			
PSI	Indicates pump drive oil pressure when operating.			
	Measure s listed below RPM DEG DEG DEG PSI DEG F HOURS - DEG V DEG/IN MPH MPH DEG F			

Diagnostic Screens

Operating conditions listed below are displayed only by turning limit by-pass switch and scrolling up with digital display selector. To turn off diagnostic screens, turn limit bypass switch and scroll down or stop and restart engine.

DRUM [2]		
SWING		
TRK (Travel)		
FCN (Front Console Node)	4 Rows of	Text and numbers are used to monitor and troubleshoot controls and hydrauli systems. See Crane Diagnostics in this section for explanation of these
CAN (CAN-Bus)	Text and Numbers in Display	
ACC (Accessory System)		screens.
WIRELESS	Screen	
LEVEL		
SPEEDS AND TORQUE		
HYD SYSTEM CHECK		
CRANE MODE (name of mode)	_	See Crane Mode Selector instructions in this section for procedure to select and confirm desired crane mode.
PROGRAM M000001.0JP	_	Computer Program Version. Factory service personnel will request these numbers when troubleshooting crane problems.
CON 00000000000	_	Computer and Crane Configuration Code. Factory service personnel will request these numbers when troubleshooting crane problems.

^[1] Optional Item.

^[2] Appropriate Drum Number.

Table 3-6 Operating Limits

Listed below are limits which turn on the operating limit alert (yellow light and continuous buzzer). When the alert comes on, the OPERATING LIMIT group of the digital display indicates which limit has been reached; take corrective action.

Display Reading	Function Response	Corrective Action
BLOCK LEVEL	Block level sensing fault.	Block angle exceeded for parts of line. See Block Level screen in Crane Diagnostic section.
BLOCK UP	Stops load drums from hoisting and boom/ luffing jib from lowering.	Lower corresponding load or raise boom or jib.
CONFIRM MODE	All drums inoperable until an operating mode is selected and confirmed.	Select and confirm the desired operating mode (see Operating Controls in this section for procedure).
CRANE LEVEL	Crane is 3 degrees out of level when jacking.	Level crane with individual jacking switches.
FUNCTION PARKED	Function inoperable because it is parked.	Turn corresponding park switch off and sit down in operator's seat.
JIB BELOW HORIZONTAL [1]	Luffing jib operable. See capacity chart for luffing jib minimum operating angles.	Raise luffing jib above horizontal.
LOAD MOMENT	Stops all load drums from hoisting and boom/luffing jib from lowering.	Land load on load drum or raise boom or jib.
MAST BELOW 2 DEGREES	Stops down movement of live mast when lowering mast to transport position.	Pin live mast in place before retracting mast arms cylinders fully.
MAST TOO FAR FORWARD	Boom hoist (live mast) inoperable in lowering direction (occurs if mast is below 160°).	Raise live mast. Further lowering is not intended—mast will fall.
MAX DOWN [1]	Stops boom from lowering (limit set at 0°).	Raise boom or luffing jib.
	Stops luffing jib from lowering when boom to luffing jib MINIMUM angle is reached.	
MAX UP 1	Stops boom from rising when maximum up limit is reached. [2] Stops luffing jib from rising when boom to jib	Lower boom/luffing jib.
	MAXIMUM WORKING angle is reached. This angle can be bypassed to raise jib to MAXIMUM angle.	
MAX UP 2 [1]	Stops luffing jib from rising when boom to jib MAXIMUM angle is reached. This limit can be bypassed only when boom is below 50°.	Lower luffing jib.
MAX BAIL	Drum stops hoisting.	Operate drum in lowering direction.
MIN BAIL	Drum stops lowering.	Operate drum in hoisting direction.
RANGE LIMITER	Stops swing movement of rotating bed when either swing limit is reached.	Swing rotating bed in opposite direction away from limit.
SWING PARKED (cranes with swing lock)	Stops travel function with MAX-ER.	Place swing park in off position to travel.
SWING PARKED (cranes without swing lock)	Stops travel function without MAX-ER.	1) Place swing park in off position to travel. 2) Install W48 Shorting Plug in MAX-ER Junction Box IF configured without MAX-ER attachment. 3) Confirm swing brake release pressure on Swing (Crane) diagnostic screen; if below 200 psi (13,8 Bar), troubleshoot swing brake hydraulic circuit.

^[1] Optional item.

^[2] Angle at which boom stops varies with attachment. See Section 4 of this manual for maximum operating angles.

Table 3-7 System Faults

Listed below are faults which turn on the system fault alert (red light and beeper). When the alert comes on, the SYSTEM FAULT group of the digital display indicates which fault has occurred; take corrective action. The beeper sounds intermittently.

Display Reading	Function Response	Cause of Fault
BATTERY VOLTAGE LOW	Correct cause for low voltage to prevent faulty crane operation.	Battery voltage below 18 volts.
BOOM ANGLE SENDER	All functions operable, BOOM ANGLE and BOOM TO LUFF JIB ANG display will be faulty; correct cause of angle sender fault as soon as possible.	Sender output voltage 0 volts or above 9.7 volts. Fault not active when crane is in SETUP mode.
CRANE LEVEL SENSOR	Jacking ALL switch inoperable. Crane is 4.7 degrees out of level	Use individual jacking switches to level crane.
DISABLED DIG OUTPUT	Affected system not operating properly. Correct cause of fault as soon as possible.	Electric signal interrupted between computer node and output device (i.e.: faulty brake solenoid or broken wire).
ENGINE OIL PRESSURE LOW	Does not affect operation. Correct cause of low oil pressure as soon as possible to prevent engine damage.	Oil pressure below 15 psi (1,0 bar).
ENGINE TEMP HIGH	Does not affect operation. Correct cause of overheating as soon as possible to prevent engine damage.	Engine coolant temperature above 205°F (96°C).
FILTER FAULT 1 or 2	All functions operable. Replace charge filter 1 or 2 as soon as possible. Cranes prior to S/N 18001082.	Filter is dirty.
FILTER FAULT 4	All functions operable. Replace return filters as soon as possible. Cranes prior to S/N 18001082.	Filter is dirty.
FILTER FAULT 1	All functions operable. Replace return filter 2 as soon as possible. Crane S/N 18001082 and newer. See <u>Table 3-8</u> .	Filter is dirty.
FILTER FAULT 2	All functions operable. Replace return filter 3 as soon as possible. Crane S/N 18001082 and newer. See <u>Table 3-8</u> .	Filter is dirty.
FILTER FAULT 4	All functions operable. Replace return filter 1 as soon as possible. Crane S/N 18001082 and newer. See <u>Table 3-8</u> .	Filter is dirty.
FILTER FAULT 8	Oil flow through suction filter inside hydraulic tank blocked.	Remove blockage or hydraulic pumps will be damaged from cavitation.
FUEL LEVEL SENSOR	Five percent fuel remaining in tank. Does not affect operation.	Fill tank as soon as possible to prevent engine stoppage.
HYDRAULIC FAN	Tier 4 engine. Does not affect operation. Correct cause of fault as soon as possible to prevent engine or hydraulic system from overheating.	Fan system pressure below 500 psi (34 bar).
HYDRAULIC FLUID LEVEL LOW	Does not affect operation. Fill tank as soon as possible.	Hydraulic oil at CAUTION LOW LEVEL indicated on tank gauge.
HYDRAULIC FLUID TEMP LOW	Reduce loads and/or speeds to allow oil to warm.	Oil temperature in hydraulic tank is below 40°F (4°C).
HYDRAULIC FLUID TEMP HIGH	Does not affect operation. Reduce loads and/or speeds to allow oil to cool.	Oil temperature in hydraulic tank above 180°F (82°C).

Display Reading	Function Response	Cause of Fault	
LOAD PIN	Load drum operation will stop.	Load pin voltage not within 0.5 - 9 volts.	
LUFFING JIB ANGLE SENDER [1]	All functions operable, but JIB ANGLE and BOOM TO LUFF JIB ANG display will be faulty; correct cause of angle sender fault as soon as possible.	Sender output voltage 0 volts or above 9.7 volts. Fault not active when crane is in SETUP mode.	
MAST SYSTEM	Mast operation with boom hoist will stop.	Boom or accessory transducer voltage less than 0.6 volts.	
PUMP DRIVE PRESSURE LOW [2]	Does not affect operation. Shut down and correct cause as soon as possible to prevent gear or bearing damage.	Gear oil pressure below 5 psi (0,34 bar). Check pump for proper operation. Check pump drive oil level.	
PUMP DRIVE TEMP HIGH [2]	Does not affect operation. Shut down and correct cause as soon as possible to prevent gear or bearing damage.	Gear oil temperature above 250°F (121°C). Check oil cooler for proper operation. Check pump drive oil level.	
SUPERCHARGE PRESSURE (Prior to S/N 18001082)	Does not affect operation. Shut down and correct cause as soon as possible to prevent pump cavitation.	Accessory pressure at pressure switch (suction manifold) is less than 15 psi (1 bar). Check hydraulic accessory system.	
WIRELESS SYSTEM	Wireless load link sensing fault.	See wireless link information in Rated Capacity Indicator/Limiter manual.	
EXTERNAL VAC	Does not affect operation. Disconnect external power supply cable.	External power supply cable connected to crane when attempting to swing.	

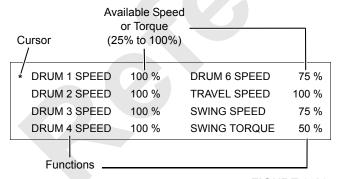
^[1] Optional item.

Table 3-8 Filter Fault Indication

FILTER FAULT INDICATION	RETURN FILTER 1 AFFECTED	RETURN FILTER 2 AFFECTED	RETURN FILTER 3 AFFECTED
FILTER FAULT 1		X	
FILTER FAULT 2			Х
FILTER FAULT 3		X	Х
FILTER FAULT 4	X		
FILTER FAULT 5	X	X	
FILTER FAULT 6	X		Х

^[2] Pump drive faults apply only to current production cranes (pump drives with a circulating oil system).

FUNCTION SPEED/TORQUE ADJUSTMENT


The speed of each crane function (all drums, travel, swing) and swing torque can be adjusted to suit operator needs.

Adjustment

To adjust the desired function's speed or swing torque, proceed as follows:

- 1. Stop operating the desired function and park it.
- 2. Access diagnostic screens (Figure 3-16):
 - a. Turn limit bypass key clockwise and scroll up at least one screen (with selector next to display screen).
 - b. Once step 2a is performed, release key and scroll up or down through diagnostic screens until speed and torque screen appears.
- **3.** Press BOTTOM of CONFIRM/SELECT switch until cursor (*) appears next to desired function.
- **4.** Scroll up or down to change speed or torque of selected function to desired percentage between 25% and 100%.
- **5.** Repeat steps 1, 3 and 4 for other functions, as desired.
- Press BOTTOM of CONFIRM/SELECT switch until cursor (*) disappears.
- Adjustment is complete. The selected speeds and torque will remain in computer memory, even after engine is stopped.
- 8. If desired, turn off diagnostic screens:
 - a. Turn limit bypass key clockwise.
 - **b.** Once step 8a is performed, scroll down at least one screen and release key.

Stopping engine will also turn off diagnostic screens.

FIGURE 3-16

CRANE DIAGNOSTICS

General

To enable the diagnostic screens, turn limit bypass key switch clockwise and scroll up at least one screen. Once this step is performed, you can scroll up or down through the diagnostic screens in addition to the operating screens. To disable the diagnostic screens, turn limit bypass key switch clockwise and scroll down. The operating screens remain active.

The diagnostic screens provide information about the status of all main crane components as well as the controller inputs and outputs during operation. The diagnostic screens display the following information:

- Particular crane functions DRUMS, SWING, and TRACK. See Figure 1-1 in Section 1 of this Service/ Maintenance Manual for drum location and identification.
- FCN (front console node) and CAN (can bus) screens display digital input and digital output information —
 <u>Table 3-11</u> (digital inputs to master node controller), and <u>Table 3-12</u> (digital outputs from crane master node controller). See <u>Figure 3-17</u> for location of node controllers.
- Controller programming information —These screens are for factory use only, and are not shown in this folio.
- Hydraulic system calibration information Check includes pressure sender calibration, control calibration, pump pressure test, and charge pressure test.
- Speed adjustment screen Allows for setting each drum, travel, and swing system maximum operating speed and swing torque.
- Accessory (ACC) system Provides accessory system component status information.
- Wireless screen Provides load link and hand-held radio remote information.
- Crane mode screen Allows for selecting crane mode of operation.
- <u>Table 3-13</u> contains bank identifier numbers.

Drum 1

HANDLE	+/-0 %	0.0 V	PRESS	0 psi	
PUMP A	+/-0 %	0 CS	SPEED	+/-0 rpm	
PUMP B	+/-0 %		BRAKE	0	
MOTOR	0 %		DOS	0	DRUM 1

DRUM 1 screen displays the following information:

- Control HANDLE command in percent from neutral with + raise and - lower.
- The normal operating voltage (V) outputs of the control handle range is 2.4 to 0.5 volts to raise a load and 2.6 to 4.5 volts to lower a load.

NOTE: With drum control handle D function, raise and lower voltage is reversed.

- Control handle Center Switch (CS) command with 0 neutral and 1 active.
- PUMP A and B command in percent from neutral with + raise and - lower for each pump.
- MOTOR command in percent with 0% maximum displacement and 100% minimum displacement.
- Measured hoist PRESSURE (psi) at high side pressure port.
- Measured drum SPEED in rpm with + raise and lower.
- Park BRAKE command with 0 engaged and 1 released.
- DOS (digital output status) displays a binary number (or total) if digital output signal is disabled to: pump A drum 1 (1), pump B drum 1 and 3 (2), motor 1 (4), motor 2 (8) or drum brake (16).

Drum 2

HANDLE	+/-0 %	0.0 V	PRESS	0 psi	
PUMP A	+/-0 %	0 CS	SPEED	+/-0 rpm	
PUMP B	+/-0 %		BRAKE	0	
MOTOR	0 %		DOS	0	DRUM 2

DRUM 2 screen displays the following information:

- Control HANDLE command in percent from neutral with + raise and - lower.
- The normal operating voltage (V) outputs of the control handle range is 2.4 to 0.5 volts to raise a load and 2.6 to 4.5 volts to lower a load.

NOTE: With drum control handle D function, raise and lower voltage is reversed.

- Control handle Center Switch (CS) command with 0 neutral and 1 active.
- PUMP A and B command in percent from neutral with + raise and - lower for each pump.
- MOTOR command in percent with 0% maximum displacement and 100% minimum displacement.
- Measured hoist PRESSURE (psi) at high side pressure port.
- Measured drum SPEED in rpm with + raise and lower.

- Park BRAKE command with 0 engaged and 1 released.
- DOS (digital output status) displays a binary number (or total) if digital output signal is disabled to: pump A drum 2 (1), pump B drum 2 and 5 (2), motor 1 (4), motor 2 (8), or drum brake (16).

Drum 3

HANDLE	+/-0 %	0.0 V	PRESS	0 psi	
PUMP A	+/-0 %	0 CS	SPEED	+/-0 rpm	
			BRAKE	0	
MOTOR	0 %		DOS	0	DRUM 3

DRUM 3 screen displays the following information:

- Control HANDLE command in percent from neutral with + raise and - lower.
- The normal operating voltage (V) outputs of the control handle range is 2.4 to 0.5 volts to lower a load and 2.6 to 4.5 volts to raise a load.

NOTE: With drum control handle D function, raise and lower voltage is reversed.

- Control handle Center Switch (CS) command with 0 neutral and 1 active.
- PUMP A command in percent from neutral with + raise and - lower.
- MOTOR command in percent with 0% maximum displacement and 100% minimum displacement.
- Measured hoist PRESSURE (psi) at high side pressure port.
- Measured drum SPEED in rpm with + raise and lower.
- Park BRAKE command with 0 engaged and 1 released.
- DOS (digital output status) displays a binary number (or total) if digital output signal is disabled to: pump A - drum 1 and 3 (1), motor (2), brake (4) or diverter - drum 1 and 3 (8).

Drum 4

HANDLE	+/-0 %	0.0 V	PRESS	0 psi	
PUMP A	+/-0 %	0 CS	SPEED	+/-0 rpm	
PUMP B	+/-0 %		BRAKE	0	
MOTOR	0 %		DOS	0	DRUM 4

DRUM 4 screen displays the following information:

 Control HANDLE command in percent from neutral with + raise and - lower. The normal operating voltage (V) outputs of the control handle range is 2.4 to 0.5 volts to raise a load and 2.6 to 4.5 volts to lower a load.

NOTE: With drum control handle D function, raise and lower voltage is reversed.

- Control handle Center Switch (CS) command with 0 neutral and 1 active.
- PUMP A and B command in percent from neutral with + raise and - lower for each pump.
- MOTOR command in percent with 0% maximum displacement and 100% minimum displacement.
- Measured hoist PRESSURE (psi) at high side pressure port.
- Measured drum SPEED in rpm with + raise and lower.
- Park BRAKE command with 0 engaged and 1 released.
- DOS (digital output status) displays a binary number (or total) if digital output signal is disabled to: pump A pump 1 (1), pump B pump 2 (2), motor 1 (4), motor 2 (8), drum brake (16) or drum pawl (32).

Drum 5

HANDLE PUMP A	+/-0 % +/-0 %	0.0 V 0 CS	PRESS SPEED	0 psi +/-0 rpm	
			BRAKE	0	DDUM 5
MOTOR	0 %		DOS	0	DRUM 5

DRUM 5 screen displays the following information:

- Control HANDLE command in percent from neutral with + raise and - lower.
- The normal operating voltage (V) outputs of the control handle range is 2.4 to 0.5 volts to raise a load and 2.6 to 4.5 volts to lower a load.

NOTE: With drum control handle D function, raise and lower voltage is reversed.

- Control handle Center Switch (CS) command with 0 neutral and 1 active.
- PUMP A command in percent from neutral with + raise and - lower.
- MOTOR command in percent with 0% maximum displacement and 100% minimum displacement.
- Measured hoist PRESSURE (psi) at high side pressure port.
- Measured drum SPEED in rpm with + raise and lower.
- Park BRAKE command with 0 engaged and 1 released.

 DOS (digital output status) displays a binary number (or total) if digital output signal is disabled to: pump A - drum 5 (1), not used (2), drum brake (4), drum pawl (8) or diverter (16).

Drum 6

HANDLE	+/-0 %	0.0 V	PRESS	0 psi	
PUMP A	+/-0 %	0 CS	SPEED	+/-0 rpm	
			BRAKE	0	
MOTOR	0 %		DOS	0	DRUM 6

DRUM 6 screen displays the following information:

- Control HANDLE command in percent from neutral with + raise and - lower.
- The normal operating voltage (V) outputs of the control handle range is 2.4 to 0.5 volts to raise a load and 2.6 to 4.5 volts to lower a load.

NOTE: With drum control handle D function, raise and lower voltage is reversed.

- Control handle Center Switch (CS) command with 0 neutral and 1 active.
- PUMP A command in percent from neutral with + raise and - lower.
- MOTOR command in percent with 0% maximum displacement and 100% minimum displacement.
- Measured hoist PRESSURE (psi) at high side pressure port.
- Measured drum SPEED in rpm with + raise and lower.
- Park BRAKE command with 0 engaged and 1 released.
- DOS (digital output status) displays a binary number (or total) if digital output signal is disabled to: pump A (1), motor (2), drum brake (4) or drum pawl (8).

Swing (Crane)

HANDLE	+/-0 %	0.0 V	RT PRES	0 psi	
PUMP	+/-0 %	0 CS	LT PRES	0 psi	
BRAKE	0 %	0 psi	DOS	0	
LOCK	0				SWING

The SWING screen displays the following information:

- Control HANDLE command in percent from neutral with + right and - left.
- The normal operating voltage (V) outputs of the control handle range is 2.4 to 0.5 volts for left swing and 2.6 to 4.5 volts for right swing.

- Control handle Center Switch (CS) command with 0 neutral and 1 active.
- PUMP command in percent from neutral with + right and
 left.
- Park BRAKE command with 0 engaged and 1 released.
- Swing Brake Pressure (cranes without swing lock).
- Swing LOCK command with 0 engaged and 1 released (cranes with swing lock).
- Measured pump RT PRES (psi) when swinging right.
- Measured pump LT PRES (psi) when swinging left.
- DOS (digital output status) displays a binary number (or total) if the digital output signal is disabled to: pump 1 (1), pump 2 (2), swing brake (4), swing lock in (8) or swing lock out (16).

Trk (Travel)

	LEFT	RIGHT	BRAKE	0
HANDLE	+/-0 % 0.0 V	+/-0 % 0.0 V	MOTOR	0
PUMP	+/-0 % 0 CS	+/-0 % 0 CS	CRUISE	0
PRES	0 psi	0 psi DOS	0	TRK

The right and left TRK (Travel) screen displays the following information:

- Control HANDLE command in percent from neutral with + forward and - reverse.
- The normal operating voltage (V) outputs of the control handle range 2.6 to 4.5 volts for forward and 0.5 to 2.4 volts for reverse.
- Control handle Center Switch (CS) command with 0 neutral and 1 active.
- Left or right PUMP command in percent from neutral with + forward and - reverse.
- Measured track PRESS (psi) at right or left crawler track.
- Park BRAKE command with 0 engaged and 1 released.
- MOTOR command with 0 high speed/minimum displacement and 1 low speed/maximum displacement.
- CRUISE indicates status of travel cruise with 1 engaged and 0 disengaged.

• DOS (digital output status) displays a binary number (or total) if the digital output signal is disabled to: right pump (1), left pump (2), travel brake (4), or motor (8).

FCN (Front Console Node)

DI BANKS:	72	8	33	15	
DO BANKS:	223	0			
TF BANKS:	000	000	000	000	
					FCN

The status of the digital inputs and outputs of the front console controller is displayed in the FCN screen. Each bank can indicate the state of up to 255 individual digital inputs or outputs. The FCN screen displays the following information:

- Front console digital input DI BANKS 1, 2, 3, and 4.
- Front console digital output DO BANKS 5 and 6.
- Only programmers use TF BANKS 1, 2, 3, and 4.

Each individual input/output is assigned a number (identifier) in the binary system (powers of two). The identifiers of all inputs/outputs that are ON (active) for each bank are added for a total of 0-255. The number displayed for each bank is the $\it sum$ of all identifiers that are ON in that bank. Each possible ON/OFF combination per bank has a unique total.

To determine the state of an individual digital input or output (crane component), find the individual crane component in <u>Table 3-11</u> or <u>Table 3-12</u>, for example: Seat Switch *FCN-3-1*.

 The first part of the Code Number FCN indicates that the individual input or output is located in the FCN computer.

NOTE: If the Code Number starts with CAN, see CAN screen for input/output.

- The second part of the Code Number 3 is the bank where the individual information is shown on the FCN screen.
- The third part of the Code Number 1 is the item identifier.

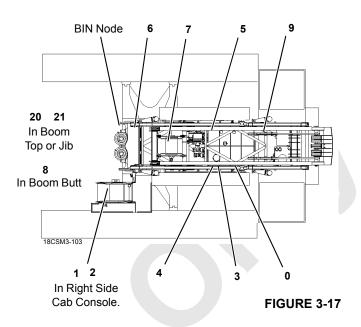
To determine the state of the individual input/output in a bank, find the number displayed for the bank in the numbered column of <u>Table 3-13</u>. In the corresponding row the identifier numbers that are ON (active) in the bank are shaded. In the above example if 1 is shaded the Seat Switch is ON (active).

Node Number	Node	
1	Master (Front Console)	
2	Handles and Cab Controls	
3	Drum 3 and Pressure Senders	
4	Jacking, Connecting Pins, and Mast	
5	Alarms, Limits and Pump Controls	
6	Drums 2, 4, 5 & Adapter Frame Pins	
7	Swing and Auto Lube	
8	Drum 1 and Drum 6	
9	MAX-ER (optional)	
0	Engine	
20	Boom Top (not shown)	
21	Luffing or Fixed Jib Top (not shown)	

CAN (Can Bus)

STATUS 033	000	HIST	000 000	ENG	12
*PACKET ID #	38		BOOM 16	W/L	1
BANKS 1 - 4:	55	0	178 0		
BANKS 5 - 8:	4	35	0 16		CAN

The CAN screen displays digital inputs and outputs of the master node controller. The location of crane nodes are shown in <u>Figure 3-17</u>. The CAN screen displays the following information:


 STATUS indicates possible active communication errors between nodes on two banks that should read 000. The binary system status numbers are shown in <u>Table 3-9</u>.

If a communication error occurs (033 in bank one) see <u>Table 3-9</u> for bank identifier numbers (node-2 and node-7)

Table 3-9

Bank 1	1 = Node 2	16 = Node 6
	2 = Node 3	32 = Node 7
	4 = Node 4	64 = Node 8
	8 = Node 5	128 = Node 0
Bank 2	1 = Node 9	2= BIN Node

- HISTORY indicates errors since power was cycled.
 Communication errors correspond to above table.
- BOOM indicates what boom nodes may be available on the bus. Boom status should always display a number or an error exists (see <u>Table 3-10</u>).

Table 3-10

•	Boom Status	Node Number	Description
	1	21	Luffing Jib node with #44
	8	21	Luffing jib node 79A or Fixed jib node 79A
	16	20	Boom top node 55A or 79A
	128	20 or 21	Indicates a node is present that is not currently identified.

- ENGINE displays engine ECM bus status that is for factory use only.
- W/L indicates what wireless receiver nodes can be available.
 - Number 1 is boom to load link.
 - Number 2 is remote.
- PACKET ID number Move select/confirm switch to SELECT. Cursor appears next to Packet ID #. Scroll up or down to desired packet number to display packet item status.
- Digital input or digital output BANKS 1, 2, 3, and 4.
- Digital input or digital output BANKS 5, 6, 7, and 8.

Each individual input/output is assigned a number (identifier) in the binary system (powers of two). The identifiers of all inputs/outputs that are ON (active) for each bank are added for a total of 0-255. The number displayed for each bank is the $\it sum$ of all identifiers that are ON in that bank. Each possible ON/OFF combination per bank has a unique total.

To determine a state of an individual digital input or output, find the individual crane component in <u>Table 3-11</u> or <u>Table 3-11</u>, for example: Return Filter Alarm *CAN38-1-32*.

 The first part of the Code Number CAN38 indicates that the individual input or output is located in packet 38 of the master CAN computer.

NOTE 1: If the Code Number starts with FCN, see FCN screen for the input/output.

- Select PACKET ID# 38 by moving select/confirm switch to SELECT and a cursor appears next to Packet ID #. Scroll up or down to desired packet number to display packet item status.
- The second part of Code Number 1 is bank were the individual information is shown on the CAN screen.
- The third part of the Code Number 32 is the item identifier.

To determine the state of the individual input/output in a bank, find the number displayed for the bank in the numbered column of <u>Table 3-13</u>. In the corresponding row the identifier numbers that are ON (active) in the bank are shaded. In the above example if **32** is shaded the Return Filter Alarm is ON (active).

To exit CAN screen move select/confirm switch to SELECT and cursor disappears. Continue scrolling up or down to access next screen.

Hydraulic System Calibration

See Hydraulic System Calibration Procedures in this section.

PRESSURE SENDER CAL	0%	0	0
CONTROL CAL	0%	0	
PUMP PRESSURE TEST	0%	0	
CHARGE PRESSURE		0	0

Speed/Torque

See Function Speed/Torque Adjustment in this section.

DRUM 1 SPEED	25 %	DRUM 6 SPEED	25 %
DRUM 2 SPEED	50 %	TRAVEL SPEED	75 %
DRUM 3 SPEED	25 %	SWING SPEED	25 %
DRUM 4 SPEED	25 %	SWING TORQUE	60 %

Accessory System

HANDLE	+/-0 %	ACC PRES	psi	
ACC VLV	-0 %	DM 5 PRES	psi	
DM 5 PMP	+/-0 %	DM 5 SPD	rpm	
VALVES	256	ACCUM P	psi	ACC

The ACC system screen displays the following information:

- Drum 5 (mast hoist) control HANDLE command in percent from neutral with + raise and lower.
- Accessory valve (ACC VLV) command in percent.
- Drum 5 (mast hoist) pump (DM 5 PMP) command in percent from neutral with + raise and lower.
- Accessory system pressure (ACC PRES) in psi.
- Drum 5 (mast hoist) pump pressure (DM 5 PRES) in psi.
- Drum 5 (mast hoist) drum speed (DM 5 SPD) in rpm.
- Accumulator system pressure (ACCUM PRES) in psi.
- VALVES displays binary number of system components that are active in bank:

Bank 1:

- 1 = Jacking command.
- 2 = Rotating fame command.
- 4 = Mast raise switch and mast hoist control handle command is OFF.
- 8 = Mast lower switch and mast hoist control handle command is OFF
- 16 = Boom hinge pins in switch.
- 32 = Boom hinge pins out switch.
- 64 = Mast pins in switch.
- 128 = Mast pins out switch.
- 256 = Cab tilt up.
- 512 = Cab tilt down.
- 1028 = Raise mast arms from stored position.
- 2056 = Lower mast arms to stored position.
- 4096 = MAX-ER cylinder.
- 8192 = Rigging winch command.

Wireless

*REMOTE TxID	0000				
SENSOR BANKS:	0	64	0	128	160
LOAD LINK TRAFFIC	0	0			
REMOTE TRAFFIC	0	0			WIRELESS

The WIRELESS screen displays the following information:

- REMOTE TxID where the link identification code is entered and displayed. To enter a link identification code, press select. The cursor (*) appears next to remote TxID. Press select again to enter identification code area. Scroll up or down to enter 0 to 9 and/or A to F, press select to move through each four positions.
- SENSOR BANKS where the four banks listed below display information shown in table.
 - 1. Link 1 information.
 - 2. Link 2 information.
 - 3. Link 3 information.
 - 4. Hand-held radio remote control information.
 - 5. Block Level control information.

Binary Number	Information	
1, 2, or 4	Disregard information displayed.	
8	RF link suspect.	
16	Configuration data corrupt.	
32	Internal CPU error.	
64	Sensor voltage out of range.	
	(Not used with block level sensor)	
128	Sensor battery low.	

- LOAD LINK TRAFFIC where bank one is transmitter identification and bank two property code (weight code of link). The two banks work together and continuously display information for each load link in immediate area.
- REMOTE TRAFFIC where bank one is transmitter identification and bank two property code of hand-held radio remote. The two banks work together and continuously display information for each radio remote in immediate area.

NOTE: Cranes with 2.4 Ghz wireless systems will not display traffic information.

Block Level Sensor

*BLOCK LEVEL SENSOR	01B2	
BLOCK ANGLE	+ 3.43 DEG	
DRUM 1 PUMP	30%	
DRUM 2 PUMP	31%	LEVEL

The LEVEL screen displays the following information when:

BLOCK LEVEL SENSOR - where the block identification code is entered and displayed. To enter a block identification code, press select. The cursor (*) appears next to Block Level Sensor. Press select again to enter identification code area. Scroll up or down to enter 0 to 9, press select to move through each four positions.

BLOCK ANGLE - where the block angle is displayed. A block level fault occurs if the maximum block angle for parts of line is exceeded:

Parts of Line
16 or less
20
24
28
32
36

DRUM 1 and 2 PUMP - displays pump command in percent.

Crane Mode

Crane Mode - STANDARD	
PROG M0000000.ONP	CON 000000

The crane mode screen displays the selected crane mode:

- Crane mode.
- PROG is computer program version.
- · CON is computer and crane configuration code.

Hydraulic Fan (Tier 4 only)

PRESS	000 PSI
PUMP	0 %
STATUS	0
H	/RAULIC FAN

The hydraulic fan screen displays the following information for the Tier 4 hydraulic fan system:

- PRESS Fan system pressure. Increased cooling demand and increased engine speed will increase this pressure.
- PUMP Displays the current pump command. This will range from 5 to 100% and change in response to cooling demand and engine speed.
- STATUS Displays the error status of the fan system:
 0 = okay.

Bit 1 = fan pressure transducer out of range.

Bit 2 = fan control valve digital output fault.

Bit 3 = fault is set if fan pressure is below 500 psi (34,5 bar) after the system is initialized. Will cause the backup coil to energize and try to fully stroke the pump.

DIGITAL INPUT AND OUTPUT ITEM TABLES

<u>Table 3-11</u> and <u>Table 3-12</u> identify selected component digital Inputs and digital outputs used on the crane. The Code Number indicates the computer packet number (CAN) or front console computer location (FCN).

See CAN screen if the item Code Number has a CAN prefix or to FCN screen if item Code Number has a FCN prefix. Table 3-13 lists the identifier numbers that are ON (active) for each bank.

Table 3-11 Digital Inputs

CAN Packet Number	Item Description (Node Number)	CAN Packet Number	Item Description (Node Number)
CAN57-1-1	Handle A Direction Signal (2)	FCN-1-1	Drum 6 Park Switch - On (1)
CAN57-1-2	Handle D Direction Signal (2)	FCN-1-2	Crane Mode Confirm Switch (1)
CAN57-1-4	Swing Holding Brake Switch (2)	FCN-1-4	Drum 1 Park Switch - On (1)
CAN57-1-8	Swing Handle Direction Signal (2)	FCN-1-8	Crane Display Scroll Up Switch (1)
CAN57-1-16	Swing Handle Dead Man Option (2)	FCN-1-16	Drum 2 Park Switch - On (1)
CAN57-2-1	Left Track Direction Signal (2)	FCN-1-32	Crane Display Scroll Down Switch (1)
CAN57-2-2	Handle B Direction Signal (2)	FCN-1-64	Travel Park Switch - On (1)
CAN57-2-4	Handle C Direction Signal (2)	FCN-1-128	Cab Tilt Up Switch (1)
CAN57-2-8	Right Track Direction Signal (2)	FCN-2-1	RCL Mode Confirm Switch (1)
CAN59-1-4	Super Charge Hydraulic Pressure (3) (Prior to S/N 18001082)	FCN-2-2	Drum 5 Park Switch - On (1)
CAN59-1-128	Drum 3 Minimum Bail Limit Switch (3)	FCN-2-4	Limit Bypass Switch (1)
CAN61-1-128	Drum 2 Minimum Bail Limit Switch (6)	FCN-2-8	RCL Display Scroll Up Switch (1)
CAN65-1-128	Accessory System Hydraulic Pressure Sw. (7)	FCN-2-32	RCL Display Scroll Down Switch (1)
CAN67-1-4	Counterweight Limit Switch - Right Side (9)	FCN-2-64	Travel Cruise Switch - On (1)
CAN67-1-8	Counterweight Limit Switch - Left Side (9)	FCN-3-1	Seat Switch (1)
CAN69-1-4	Hydraulic Fluid Level (5)	FCN-3-2	Cab Tilt Down Switch (1)
CAN69-1-8	Charge Filter 1 Alarm (5) (Prior to S/N 18001082)	FCN-3-8	A/C Compressor Switch - On (1)
	Return Filter 2 Alarm		
	(S/N 18001082 and Newer)		
CAN69-1-128	Maximum Boom Angle Limit Switch (5	FCN-3-32	Engine Start (1)
CAN71-1-128	Drum 1 Minimum Bail Limit Switch (8)	FCN-3-64	Crane Mode Select Switch (1)
CAN132-6-64	Block Up Limit Luffing/Jib Lower Pt. (#44) (21)	FCN-3-128	Drum 4 Park Switch - On (1)
CAN132-6-128	Block Up Limit Luffing/Jib Upper Pt. (#44) (21)	FCN-4-8	Travel 2-Speed Switch (1)
CAN135-6-64	Block Up Limit Luffing/Jib Lower Pt. (#79A) (21)	FCN-4-32	Swing Park Brake - On (1)
CAN135-6-128	Block Up Limit Luffing/Jib Upper Pt. (#79A) (21)	FCN-4-64	RCL Mode Select Switch (1)
CAN136-6-64	Block Up Limit Boom Lower Point (20)	FCN-4-128	Drum 3 Park Switch - On (1)
CAN136-6-128	Block Up Limit Boom Upper Point (20)		-

Table 3-12 Digital Outputs

CAN Packet Number	Item Description (Node Number)	CAN Packet Number	Item Description (Node Number)
CAN32-1-1	Cab Base RCL Beacon/Alarm (2)	CAN32-3-128	Handle C Lower Direction (2)
CAN32-1-2	Handle A Rotation Indicator (2)	CAN33-1-1	Accessory Hydraulic Pressure (3)
CAN32-1-4	Handle C Rotation Indicator (2)	CAN33-1-2	Drum 2/5 Pressure Sender (3)
CAN32-1-8	Front Wiper Switch (2)	CAN33-1-4	Drum 1/3 Pressure Sender (3)
CAN32-1-16	Overhead Wiper Switch (2)	CAN33-1-8	Accessory System Pressure Sender (3)
CAN32-1-32	Handle D Rotation Indicator (2)	CAN33-1-16	Left Track Pressure Sender (3)
CAN32-1-64	Handle B Rotation Indicator (2)	CAN33-1-32	Right Track Pressure Sender (3)
CAN32-1-128	Handle Displays (2)	CAN33-1-64	Drum 3 Motor Control (3)
CAN32-2-1	Power to Switches 3 (2)	CAN33-1-128	Drum 3 Brake Solenoid (3)
CAN32-2-2	Handle D Lower Direction (2)	CAN33-2-1	Pump Drive Cooler Pressure (3)
CAN32-2-4	Right Travel Handle Reverse Direction (2)	CAN33-2-2	Drum 3 Minimum Bail Limit Switch (3)
CAN32-2-16	Power to Switches 1 (2)	CAN33-2-4	Drum 1/3 Pump Control - Raise (3)
CAN32-2-32	Left Travel Handle Forward Direction (2)	CAN33-2-8	Drum 1/3 Pump Control - Lower (3)
CAN32-2-64	Left Travel Handle Reverse Direction (2)	CAN33-2-16	Drum 2/5 Pump Control - Raise (3)
CAN32-2-128	Power to Switches 2/Seat Switch (2)	CAN33-2-32	Drum 2/5 Pump Control - Lower (3)
CAN32-3-1	Right Travel Handle Forward Direction (2)	CAN33-2-64	Drum 2 Pump Control - Lower (3)
CAN32-3-2	Handle D Raise Direction (2)	CAN33-2-128	Drum 2 Pump Control - Raise (3)
CAN32-3-4	Handle B Raise Direction (2)	CAN33-3-1	Drum 1/3 (opt.) Pump Control - Raise (3)
CAN32-3-8	Handle B Lower Direction (2)	CAN33-3-2	Drum 1/3 (opt.) Pump Control - Lower (3)
CAN32-3-16	Travel Cruise Switch (2)	CAN33-3-4	Left Track Pump Control - Forward (3)
CAN32-3-32	Handle C Raise Direction (2)	CAN33-3-8	Left Track Pump Control - Reverse (3)
CAN32-3-64	Foot Throttle Output (2)	CAN33-3-16	Swing 1 Pump Control - Left (3)
CAN33-3-32	Swing 1 Pump Control - Right (3)	CAN37-1-32	CWT Right Cylinder - Extend Solenoid (9)
CAN34-1-2	Drum 5 Brake Solenoid (6)	CAN37-1-64	Power to MAX-ER Remote Control (9)
CAN34-1-4	Drum 5 Pawl Out Solenoid (6)	CAN37-1-128	Power to MAX-ER Remote Control (9)
CAN34-1-8	Drum 5 Pawl In Solenoid (6)	CAN37-2-1	Power to MAX-ER Remote Control (9)
CAN34-1-64	Drum 2 Motor Control 1 (6)	CAN37-2-2	Power to MAX-ER Remote Control (9)
CAN34-1-128	Drum 2 Motor Control 2 (6)	CAN38-1-1	Hydraulic Vacuum Switch (5)
CAN34-2-1	Drum 2 Brake Solenoid (6)	CAN38-1-2	Hydraulic Fluid Level/Charge Filter 1 Alarm (5)
			(Prior to S/N 18001082).
			Hydraulic Fluid Level/Return Filter 2 Alarm
			(S/N 18001082 and newer).
CAN34-2-4	Rear Adapter Frame Pins Engage (6)	CAN38-1-4	Hydraulic Fluid Low Temperature Switch (5)
CAN34-2-8	Rear Adapter Frame Pins Disengage (6)	CAN38-1-8	Charge Filter 2 Alarm (5) (Pr or to S/N
			18001082).
			Return Filter 3 Alarm (S/N 18001082 and
			newer).
CAN34-2-16	Front Adapter Frame Pins Engage (6)	CAN38-1-16	Hydraulic Fluid High Temperature Switch (5)
CAN34-2-32	Front Adapter Frame Pins disengage (6)	CAN38-1-32	Return Filter Alarm Switch (5)
CAN34-3-4	Drum 4 Pawl In Motor (6)	CAN38-1-64	Drum 6 Pressure Sender (5)
CAN34-3-8	Drum 4 Pawl Out Motor (6)	CAN38-1-128	Drum 4 Pressure Sender (5)
CAN34-3-16	Drum 4 Motor Control 1 (6)	CAN38-2-1	Hydraulic Pumps Case Heat(5)
CAN34-3-32	Drum 4 Motor Control 2 (6)	CAN38-2-2	Swing/Travel Alarm (5)
CAN34-3-64	Drum 4 Brake Solenoid (6)	CAN38-2-4	Right Track Pump Control - Forward (5)
CAN35-1-1	Mast Pins Engage Solenoid (4)	CAN38-2-8	Right Track Pump Control - Reverse (5)
CAN35-1-2	Mast Pins Disengage Solenoid (4)	CAN38-2-16	Drum 6 Pump Control -Raise (5)
CAN35-1-4	Boom Pins Engage Solenoid (4)	CAN38-2-32	Drum 6 Pump Control - Lower (5)
CAN35-1-8	Boom Pins Disengage Solenoid (4)	CAN38-2-128	Pump Drive Cooler 1 (5)
CAN35-1-16	Cab Tilt - Down Solenoid (4)	CAN38-3-1	Drum 4A Pump Control -Raise (5)
	3. 7	044100 0 0	• • • • • • • • • • • • • • • • • • • •
CAN35-1-32	Cab Tilt - Up Solenoid (4)	CAN38-3-2	Drum 4A Pump Control -Lower (5)

CAN Dealest	Itara Dagarintian	CAN Decket	Itama Dagawinstian
CAN Packet Number	Item Description (Node Number)	CAN Packet Number	Item Description (Node Number)
CAN35-1-128	Drum 5 Diverter Solenoid (4)	CAN38-3-8	Drum 4B Pump Control -Lower (5)
CAN35-2-1	Mast Raise Solenoid (4)	CAN38-3-16	Swing 2 (optional) Pump Control - Left (5)
CAN35-2-2	Mast Lower Solenoid (4)	CAN38-3-32	Swing 2 (optional) Pump Control - Right (5)
CAN35-2-4	Drum 7 Payout Solenoid (4)	CAN38-3-64	Pump Drive Cooler 2 (5)
CAN35-2-8	Drum 7 Haul In Solenoid (4)	CAN38-3-128	Accessory System Proportional Solenoid (5)
CAN35-2-16	Right Front Jack Extend Solenoid (4)	CAN39-1-64	Drum 1 Motor Control 1 (8)
CAN35-2-32	Right Front Jack Retract Solenoid (4)	CAN39-1-128	Drum 1 Motor Control 2 (8)
CAN35-2-64	Left Front Jack Retract Solenoid (4)	CAN39-2-1	Drum 1 Brake Solenoid (8)
CAN35-2-128	Left Front Jack Extend Solenoid (4)	CAN39-2-2	Drum 1 Minimum Bail Limit Switch (8)
CAN35-3-4	Right Rear Jack Extend Solenoid (4)	CAN39-2-4	Drum 6 Pawl Motor Control (8)
CAN35-3-8	Right Rear Jack Retract Solenoid (4)	CAN39-2-8	Drum 6 Brake Solenoid (8)
CAN35-3-16	Left Rear Jack Extend Solenoid (4)	CAN39-2-16	Drum 6 Pawl In Motor (8)
CAN35-3-32	Right Rear Jack Retract Solenoid (4)	CAN39-2-32	Drum 6 Pawl Out Motor (8)
CAN36-1-64	Swing Left Pressure Sender (7)		
CAN36-1-128	Swing Right Pressure Sender (7)	FCN-5-1	Operating Limit Alarm (Beeper) and L.E.D. (1)
CAN36-2-2	Accessory System Hydraulic Pressure Sw. (7)	FCN-5-4	RCL Warning L.E.D. (1)
CAN36-2-4	Swing Brake Solenoid (7)	FCN-5-32	RCL Caution L.E.D. (1)
CAN36-2-8	Swing Lock Out Solenoid (7)	FCN-5-64	RCL Fault Alarm in Cab (1)
CAN36-2-16	Swing Lock In Solenoid (7)	FCN-5-128	System Fault Alarm (Buzzer) and L.E.D. (1)
CAN36-2-32	Travel 2-Speed Solenoid (7)	FCN-6-2	Handle B Display (1)
CAN36-3-4	Travel Brake Solenoid (7)	FCN-6-4	Engine Diagnostics (Red L.E.D.) (1)
CAN36-3-8	Track Auto Lube Solenoid (7)	FCN-6-8	Handle D Display (1)
CAN36-3-16	Swing Bearing Auto Lube Solenoid (7)	FCN-6-16	Handle A Display (1)
CAN37-1-2	CWT Left Cylinder - Retract Solenoid (9)	FCN-6-32	Engine Diagnostics (White L.E.D.) (1)
CAN37-1-4	Counterweight Limit Switch (9)	FCN-6-64	Handle C Display (1)
CAN37-1-8	CWT Right Cylinder - Retract Solenoid (9)	FCN-6-128	Engine Diagnostics (Amber L.E.D.) (1)
CAN37-1-16	CWT Left Cylinder - Extend Solenoid (9)		

Table 3-13 Bank Identifier Numbers

	1	2	4	~	16	32	64	128
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								
33								
34					Ц			
35								
36				Ę				
37								
38								
39								
40								
41		/						
42								
43								

	1	2	4	8	16	32	64	128
44								
45								
46								
47								
48								
49								
50								
51								
52								
53								
54								
55								
56								
57								
58								
59								
60								
61								4
62								
63								Ų
64					4			
65								
66					$\overline{}$			
67								
68		\vdash						
69					<u> </u>			
70 71								
72								
73								
74								
75								
76								
77								
78								
79								
80								
81								
82								
83								
84								
85								
86								

	1	2	4	8	16	32	64	128
87								
88								
89								
90								
91								
92								
93								
94								
95								
96								
97								V
98								
99								
100								
101								
102								
103								
104								
105								
106								
107								
108								
109								
110								
111								
112								
113								
114								
115								
116								
117								
118								
119								
120								
121								
122								
123								
124								
125								
126								
127								
128								
129								

Table 3-13 Bank Identifier Numbers (continued)

								8
	1	2	4	~	16	32	49	128
130								
131								
132								
133								
134								
135								
136								
137								
138								
139								
140								
141								
142								
143								
144								
145								
146								
147								
148								
149								
150								
151								
152								
153								
154								
155								
156								
157								
158								
159								
160								
161								
162								
163								
164								
165					/			
166								
167								
168								
169								
170								
171								
172								

	1	2	4	8	16	32	64	128
173								
174								
175								
176								
177								
178								
179								
180								
181								
182								
183								
184								
185								
186								
187								
188								
189								
190								
191								
192								
193						7		
194								
195								
196								
197								
198								
199								
200								
201								
202								
203								
204								
205								
206								
207								
208								
209								
210								
211								
212								
213								
214								
215								

	1	2	4	8	16	32	49	128
216								
217								
218								
219								
220								
221								
222								
223								
224								
225			Z					
226								
227								
228								
229								
230								
231								
232								
233								
234								
235								
236								
237								
238								
239								
240								
241								
242								
243								
244								
245								
246								
247								
248								
249								
250								
251								
252								
253								
254								
255								

Table 3-13 Bank Identifier Numbers (continued)

	_	2	4	8	16	32	64	128	256
256									
257									
258									
259									
260									
261									
262									
263									
264									
265									
266									
267									
268									
269	_								
270									
271									
272									
273									
274									
275									
276									
277									
278									
279									
280									
281									
282									
283									
284			_						
285	_								
286									
287									
288									
289									
290									
291									
292									
293									
294									
295					\mathcal{I}				
296									
297									
298									

	_	2	4	8	16	32	64	128	256
299									
300									
301									
302									
303									
304									
305									
306									
307									
308									
309									
310									
311									
312									
313									
314									
315									
316									
317									
318									
319									
320									
321									
322									
323									
324									
325									
326					·				
327									
328									
329									
330									
331									
332									
333									
334									
335									
336									
337									
338									
339									
340									
341									

		1						~	(0
	-	2	4	8	16	32	64	128	326
342									
343									
344									
345									
346									
347									
348									
349									
350									
351									
352									
353									
354									
355									
356				7					
357									
358									
359									
360									
361									
362									
363									
364									
365									
366									
367									
368									
369									
370									
371									
372									
373									
374									
375									
376									
377									
378									
379									
380									
381									
382									
383									
384									

Table 3-13 Bank Identifier Numbers (continued)

								m	ω
	-	2	4	8	16	32	64	128	256
385									
386									
387									
388									
389									
390									
391									
392									
393									
394									
395									
396									
397									
398									
399									
400									
401									
402									
403									
404									
405									
406									
407									
408									
409									
410									
411									
412									
413									
414									
415									
416									
417									
418									
419									
420									
421									
422					Δ.				
423									
424									
425									
426			r						
427									

								80	ဖွ
	_	7	4	8	16	32	64	12	52
428									
429									
430									
431									
432									
433									
434									
435									
436									
437									
438									
439									
440									
441									
442									
443									
444									
445									
446									
447									
448									
449									
450									
451									
452									
453									
454									
455									
456									
457									
458									
459									
460									
461									
462									
463									
464	L								
465		L							
466									
467									
468									
469									
470									

	l								
	-	2	4	8	16	32	64	128	256
471									
472									
473									
474									
475									
476						\vee			
477									
478									
479									
480									
481									
482									
483									
484									
485									
486									
487									
488									
489									
490									
491									
492									
493									
494									
495									
496									
497									
498									
499									
500									
501									
502									
503									
504									
505									
506									
507									
508									
509									
510									

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 4 BOOM

TABLE OF CONTENTS

Automatic Boom Stop Adjustment	4-1
Maximum Operating Angles	4-1
Operation	4-1
Maintenance	4-1
Bypass Limit Test	4-2
Adjustment	
Actuator Rod Replacement	4-5
Physical Boom Stop	4-6
General	4-6
Operation	4-6
Boom and Luffing Jib Angle Indicator Calibration	4-7
Mast Angle Indicator Adjustment	4-7
Mast Angle Indicator	4-7
Adjusting Angle	4-7
Sending Unit Assembly	4-7
Strap Inspection and Maintenance	
Inspection	4-9
Frequent Inspection	4-9
Periodic Inspection	4-9
Cranes Not In Regular Use	4-9
Identifying Straps	4-9
Replacement Specifications	4-10
Corrosion Or Abrasion	4-10
Straightness	4-11
Flatness	4-11
Elongated Hole	4-11
Storing Straps	
Removing Straps from Service	
Inspection Checklist	4-12
Lattice Section Inspection and Lacing Replacement	4-15

4-i

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 4 BOOM

AUTOMATIC BOOM STOP ADJUSTMENT

Maximum Operating Angles

Boom stop limit switch (5, <u>Figure 4-2</u>) automatically stops the boom and applies the boom hoist brake when the boom is raised to *Angle A* (see <u>Figure 4-1</u> and <u>Table 4-1</u>).

Operation

See Figure 4-2 for the following description.

NOTE: All reference to LED is past production only.

When the boom is below the maximum angle, limit switch (5) is closed and its LED (light-emitting diode) is ON (View B). The boom hoist can be operated.

When the boom is raised to the maximum angle, boom butt (1) pushes adjusting rod (2a or 2b) in and actuator rod (11, View A) opens limit switch (5). The LED then goes OFF. Boom hoist operation stops automatically because the open limit switch turns off power to the boom hoist electric circuit. The boom hoist pump shifts to neutral and the brake applies to stop boom movement.

WARNING

Falling Attachment Hazard!

If boom fails to stop for any reason, stop engine immediately. Troubleshoot system to determine problem. Do not resume operation until problem has been

corrected.

Maintenance

At least once weekly, check that the automatic boom stop stops the boom at the specified maximum angle. If not, replace any worn or damaged parts and/or adjust the boom stop.

Once the automatic boom stop is properly adjusted, it should not require periodic adjustment. Adjustment is required, however, when:

- The luffing jib is installed or removed
- Parts are replaced

Falling Attachment Hazard!

Do not operate crane unless automatic boom stop is properly adjusted and operational. Do not adjust maximum operating angle higher than specified. Boom could be pulled over backwards or collapse, causing death or serious injury.

Table 4-1 — Automatic Boom Stop Angles

Angle A (see Figure 4-1)	Attachment
83° ¹	#55-79A, #55, or 55A Boom without Luffing Jib
OR	
84° ²	#55-79A, #55, or 55A Boom without Luffing Jib
	When Boom Up Limit Can be Bypassed *
85°	#44 or 79A Luffing Jib on 140 – 180 ft (42,7 – 54,9 m) of Boom
87°	#44 or 79A Luffing Jib on 200 – 340 ft (61,0 – 103,6) of Boom
	When Boom Up Limit Cannot be Bypassed *
86°	#44 or 79A Luffing Jib on 140 – 180 ft (42,7 – 54,9 m) of Boom
88°	#44 or 79A Luffing Jib on 200 – 340 ft (61,0 – 103,6) of Boom

^{*} To determine if the boom up limit on you crane can be bypassed or not, perform Bypass Limit Test given below.

Bypass Limit Test

Perform the following test to determine if the boom up limit on your crane can be bypassed or not.

Maintain constant communication between operator and assistant during the following steps.

Stay clear of moving parts.

- 1. Lower the boom onto blocking at ground level.
- 2. Have an assistant push adjusting rod (2a or 2b Figure 4-2) in to trip the boom stop limit switch open.
- Rotate the limit bypass key (in crane cab) to the bypass position and hold.
- **4.** Try to boom up do not raise the boom any higher than necessary to perform the test:
 - a. If the boom rises, your boom up limit can be bypassed.
 - **b.** If the boom does not rise, your boom up limit *cannot be bypassed*.
- **5.** The test is complete. Release the limit bypass key and the adjusting rod to the normal operating positions.

^{1:} Past production with 4-3/4 in (121 mm) long adjusting rod.

²: Current production with 4-1/2 in (114 mm) long adjusting rod.

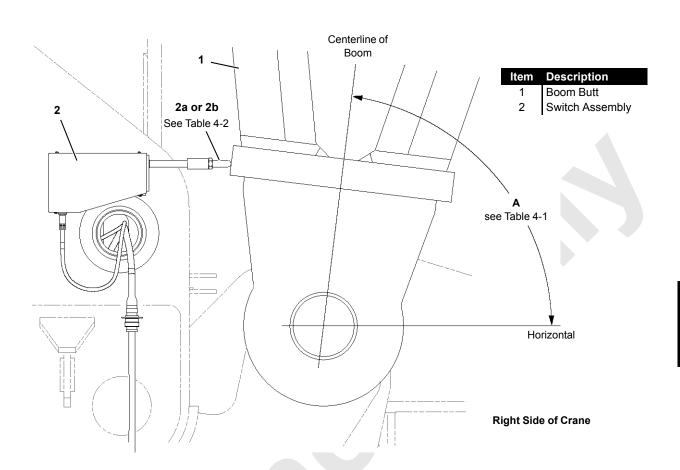
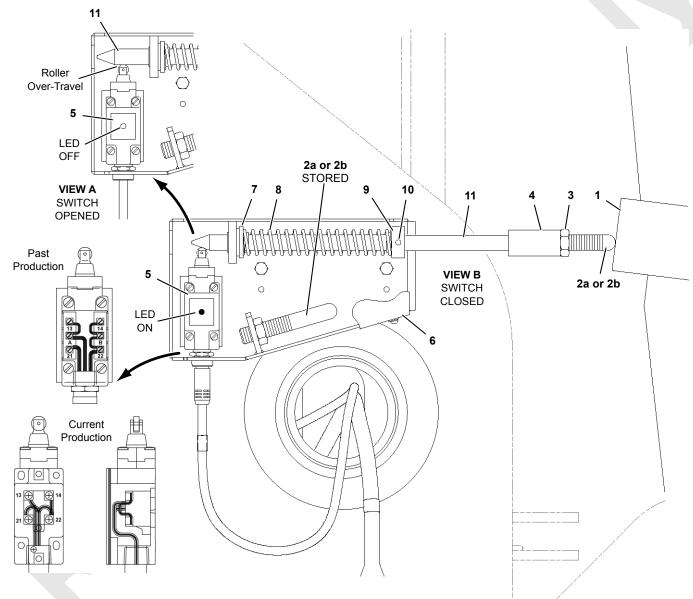
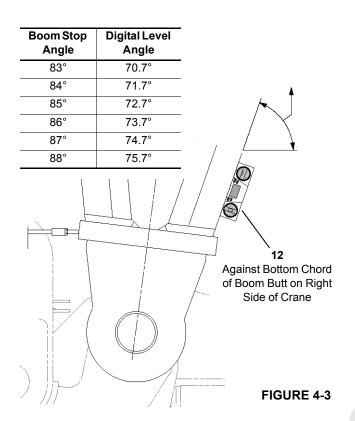



FIGURE 4-1

Table 4-2 — Adjusting Rods

Adjusting Rod Length				
2a Boom Only	2b With Luffing Jib			
When Boom Up Limit Can be Bypassed				
3/4 in (121 mm) for 83° 1/2 in (114 mm) for 84°	3-3/4 in (83 mm)			
When Boom Up Limit Cannot be Bypassed				
3/4 in (121 mm) for 83° 1/2 in (114 mm) for 84°	3-1/4 in (83 mm)			

Item	Description	Item	Description
1	Boom Butt	7	Spring Washer
2a	Adjusting Rod – Boom only	8	Spring
2b	Adjusting Rod – Boom with Luffing Jib (see Table 4-2)	9	Spring Washer
3	Jam Nut	10	Dowel Pin 1/4 in (6,35 mm) Diameter
4	Coupling	11	Actuator Rod
5	Limit Switch	12	Digital Level (see Figure 4-5)
6	Cover		


Limit Switch Wiring Past Production

Limit Switch Wiring Current Production

Receptacle	Т	ermina		Function	Receptacle	Т	erminal	s	Function
1 (green)	22	В	14	Max Angle	1 (green)	22		14	Max Angle
2 (black)	Α	13		LED	2 (black)		13		LED
3 (white)	21			12 VDC Supply	3 (white)	21			12 VDC Supply

Manıtowoc®

FIGURE 4-2

Adjustment

NOTE: All reference to LED is past production only.

- **1.** Park the crane on a firm level surface or level the crane by blocking under the crawlers.
- 2. Make sure the proper adjusting rod is installed (see Table 4-2):
 - Rod (2a) for BOOM ONLY
 - Rod (2b) for boom WITH LUFFING JIB
- Raise the boom to specified Angle A (<u>Figure 4-1</u>) while monitoring the angle on the mechanical indicator or on the operating conditions screen of the front-console display.
- **4.** Verify that the boom is at the proper Angle A:
 - a. Place an accurate digital level (12) on the boom butt as shown in <u>Figure 4-3</u>. The corresponding **Digital** Level Angle should appear on the digital level.
 - **b.** Raise or lower the boom as necessary.
- **5.** If the boom stops at the specified angle, further adjustment is not needed.
 - If the boom stops before reaching the specified angle, go to step 6.
 - If the boom reaches the specified angle before it stops, go to step 7.

See <u>Figure 4-2</u> for the remaining steps.

- **6.** If the boom stops before reaching the specified angle:
 - a. Loosen jam nut (3, View B).
 - b. Turn adjusting rod (2a or 2b) all the way into coupling (4).
 - **c.** Boom up slowly until the boom the reaches specified angle.
 - d. Turn adjusting rod (2a or 2b) out against boom butt (1) until limit switch (5) "clicks" open and the LED is OFF (View A).
 - e. Tighten jam nut (3).
- 7. If the boom reaches the specified angle before it stops:
 - a. Loosen jam nut (3, View B).
 - turn adjusting rod (2a or 2b) out against boom butt (1) until limit switch (5) "clicks" open and the LED is OFF (View A).
 - c. Tighten jam nut (3).
- 8. Check that actuator rod (11) over-travels the limit switch as shown in View A.
- 9. Test the adjustment as follows:
 - **a.** Lower the boom several degrees below the specified Angle A.
 - b. Slowly raise the boom.
 - **c. Boom must stop at specified Angle A.** If the boom does not stop at the specified angle:
 - Stop raising the boom (move control handle to off).
 - Lower the boom several degrees below the specified angle.
 - d. Repeat adjustment steps 2 through 9.

Actuator Rod Replacement

See Figure 4-2, View B for the following procedure.

- **1.** Remove damaged actuator rod (11).
- 2. Slide spring washers (7 and 9) and spring (8) over new actuator rod (11) while sliding the actuator rod into the bracket assembly.
- Position actuator rod (11) so the tapered end just touches limit switch (5) roller (View B). The actuator rod must not depress the limit switch roller.
- **4.** Drill a 1/4 in (6,35 mm) hole through spring washer (9) and actuator rod (11).
- 5. Install dowel pin (10).
- **6.** Install proper adjusting rod (2a or 2b).

7. Adjust the boom stop.

PHYSICAL BOOM STOP

WARNING

Falling Attachment Hazard!

Physical boom stops must be installed and pinned in working position for all crane operations.

Physical boom stops do not automatically stop boom at maximum operating angle. Automatic boom stop must be installed and properly adjusted.

General

The physical boom stops (Figure 4-4):

- Assist in stopping the boom smoothly at any angle above 77°
- Assist in preventing the boom rigging from pulling the boom back when traveling or setting loads with the boom at any angle above 77°
- Assist in moving the boom forward when lowering the boom from any angle above 77°
- Provide a physical stop at 89 °

Operation

See Figure 4-4 for the following procedure.

- **1.** When boom is raised to 77°, springs in boom stop tubes begin to compress.
- **2.** As boom is raised higher, spring compression increases to exert greater force against boom.
- **3.** If for any reason boom is raised to 89°, boom stop springs fully compress to provide a physical stop.

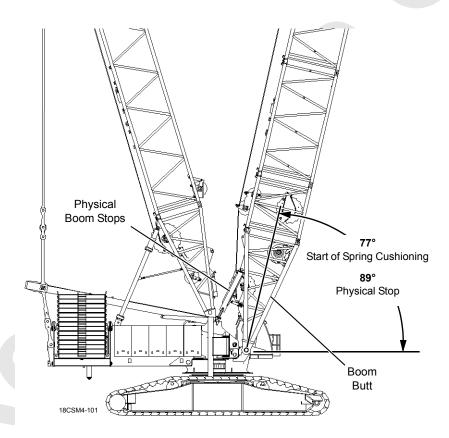
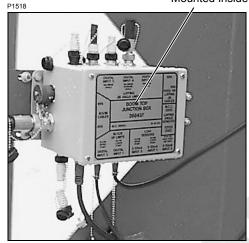


FIGURE 4-4


BOOM AND LUFFING JIB ANGLE INDICATOR CALIBRATION

The subject cranes do not have an angle indicator junction box mounted on the boom butt or on the luffing jib butt like other cranes manufactured by Manitowoc.

The angle indicator potentiometers are located inside the node controllers mounted on the boom top and on the luffing jib top.

The boom and luffing jib angles are calibrated automatically by the crane's programmable controller as part of the load indicator calibration procedure (see separate Rated Capacity Indicator/Limiter Manual for instructions).

Typical Node Controller Installation on Boom or Luffing Jib Top

FIGURE 4-5

MAST ANGLE INDICATOR ADJUSTMENT

Mast Angle Indicator

The mast angle sending unit (Figure 4-6) houses a pendulum-type 120° potentiometer (Figure 4-7) which provides a digital electronic input to the crane's programmable controller. The programmable controller uses the signal for the following purposes:

- Automatically control the position of the mast raising cylinder and levers during crane setup
- Allow the operator to monitor the mast angle on the digital display during crane setup

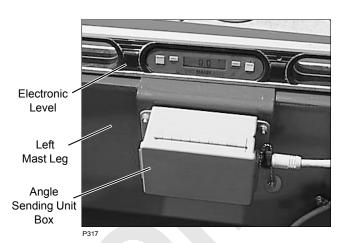


FIGURE 4-6

Adjusting Angle

Perform the following adjustment steps at initial installation, after installing a new sending unit or potentiometer, and during assembly. Mast angle should be 0° when mast is fully lowered to the rear (transport position).

NOTE: Mast must be in transport position when checking or adjusting angle indicator.

- 1. Park crane on a solid, level surface
- 2. Lower mast to transport position
- 3. Place an electronic level on mast (Figure 4-6)
- 4. Record angle indicated on level
- 5. Scroll to angle on digital display in operator's cab
- **6.** Angle shown on digital display must match angle recorded in step 4 plus or minus one degree
- If necessary, loosen mounting screws and rotate sending unit box in mounting slots until reading on digital display matches angle on level.
- 8. Securely tighten mounting screws to lock adjustment

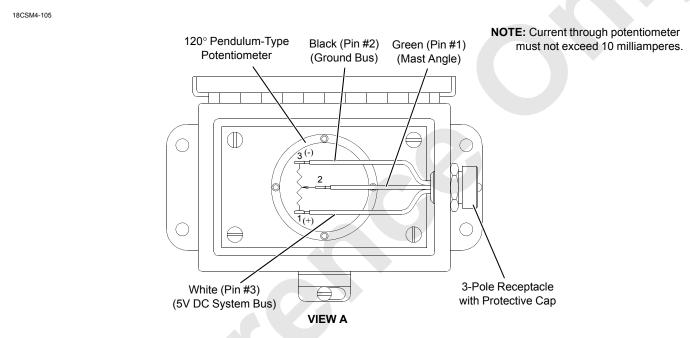
Sending Unit Assembly

Replacement sending units can be either the pendulum-type 120° potentiometer (past production) or solid state sensor (current production).

Pendulum-type 120° Potentiometer

When replacing parts in the pendulum-type potentiometer sending unit, take the following precautions (see <u>Figure 4-7</u>, View A):

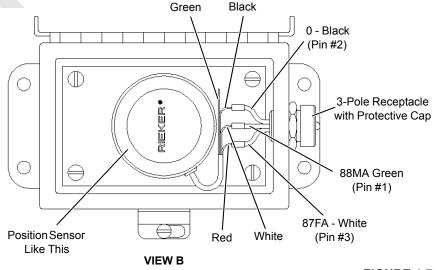
- 1. Mount potentiometer at angle shown.
- **2.** Connect black, green, and white wires from receptacle to proper terminals on terminal strip.


- Connect wires from potentiometer to proper terminals on terminal strip.
- **4.** Make sure all parts are securely fastened to their mounting position.

Solid State Sensor

When replacing existing pendulum-type potentiometer with current production solid state sensor, take the following precautions (see <u>Figure 4-7</u>, View B):

- 1. Identify all input wires to existing potentiometer.
- Cut existing input wires near terminal strip (if used) to allow for splicing.


- Remove existing potentiometer and terminal strip (if used).
- 4. Mount new sensor in existing holes as shown in View B.
- Refer to wiring chart in View B and parallel splice sensor wires to existing input wires with crimp, solder, and heat shrink tubing.
- Seal green wire on sensor with heat shrink tubing and coil up.

18CSM4-106

Solid State Sensor (+/-100°) M.C.C. #A13335 Vendor #CS17

Input Wires From	Sensor Wires To	Operation Code
Black	Black	Ground
Green	Green	Signal
White	Red	10 Volts DC
	White	N/C

STRAP INSPECTION AND MAINTENANCE

This section is a guide to crane owners for properly inspecting and maintaining straps in the field. It is impossible to predict whether or when a strap may fail. Frequent and periodic inspections can help reveal potential for failure. Straps are to be inspected regularly by a *qualified person* as part of crane's preventive maintenance program. Dated records should also be kept.

Strap repairs are prohibited. Perform only the maintenance indicated in this section. For inspection procedures not covered in this Service/Maintenance Manual, contact your dealer or the Manitowoc Crane Care Lattice Team.

WARNING

If strap damage was caused by overload or shock load or if there is damage to other major structural components, Manitowoc recommends that a thorough inspection be made by a qualified person. A nondestructive test of all critically stressed members must be made.

Strap connecting links are subject to the same inspection procedures and replacement specifications as those for straps. In this section, **strap** means straps and connecting links.

Inspection

Regular inspection of all straps is necessary to assure that crane can lift its rated load. If a strap fails, boom or other attachment can collapse. All inspections must be performed by a qualified appointed inspector at the following intervals:

- Routinely on a daily (frequent inspection) or monthly (periodic inspection)
- Before initial use
- After transport
- After an overload or shock loading has occurred
- If boom and/or jib has come into contact with another object (for example, power lines, building, another crane)
- If boom or jib has been struck by lightning

Frequent Inspection

Visually inspect all straps once each work shift for obvious damage which poses an immediate hazard. Pay particular attention to areas where wear and other damage is likely to occur. Look for straps that are disconnected, loose or

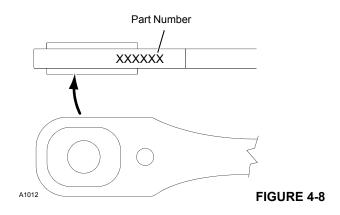
sagging excessively and for distortion such as kinking or twisting. If any strap looks like it is damaged, strap must be checked to make sure it is within specifications given in this section.

Periodic Inspection

Periodic inspection must be performed at least monthly. During this inspection, entire length of strap must be inspected to assure that it is within specifications. **Strap must be within all specifications identified in this section**. Any damage found must be recorded and a determination made as to whether continued use of strap is safe.

Before beginning inspection, thoroughly clean strap of all dirt, grease, oil, etc. so a thorough inspection can be made. Closely examine those areas where paint is chipped, wrinkled, or missing and where faint rust lines or marks appear.

A qualified inspector may modify interval for periodic inspection depending on following factors:


- Severity of environment in which crane is operated
- Size, nature, and frequency of lifts
- Exposure to shock loading or other abuse

Cranes Not In Regular Use

A qualified inspector should determine type of inspection required for cranes that have been idle. A frequent inspection (visual observation) should be adequate for a crane that has been idle for less than six months. A periodic inspection is required for cranes that have been idle for more than six months.

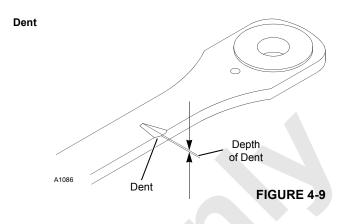
Identifying Straps

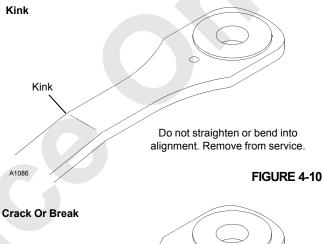
To aid in identification, part number is stamped into both ends of each strap as shown in <u>Figure 4-8</u>.

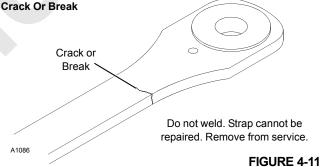
Replacement Specifications

Any strap not within specifications listed in $\underline{\text{Table 4-3}}$ must be replaced.

WARNING


If damage to strap exceeds that allowed within specification, do not operate crane until strap has been replaced.


Operating crane with a damaged strap can cause structural failure or collapse of boom, jib, mast, or other crane components.


Table 4-3 Strap Specifications

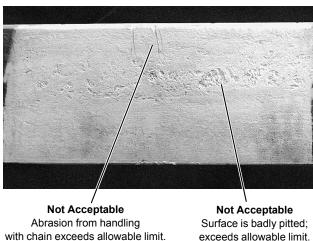
Condition	Reference	Allowable Tolerance or Deviation	Corrective Action
Dent		< 0.12 in (3,175 mm)	Monitor condition.
Dent	Figure 4-9	≥ 0.12 in (3,175 mm)	Remove strap from service.
Kink	Figure 4-10	None	Remove strap from service.
Crack or Break	Figure 4-11	None	Remove strap from service.
Corrosion or Abrasion	Figure 4-12	<6% of strap thickness	Sandblast and paint to maintain continuous protective coating.
Abrasion		≥6% of strap thickness	Remove strap from service.
Straightness (gradual or sweeping bend)	Figure 4-13	Varies depending on strap length	Remove strap from service if deviation exceeds maximum allowed.
Flatness (includes twisted straps)	Figure 4-14	Varies depending on strap length.	Remove strap from service if deviation exceeds maximum allowed.
Elongated Holes	Figure 4-15	None	Remove strap from service.
Length	Figure 4-16	None	Remove strap from service.

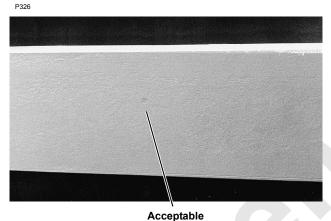
< = less than

Corrosion Or Abrasion

See Figure 4-12 for the following procedure.

For quick identification by repair workers, clearly mark damaged areas with brightly colored tape.


- 1. Sandblast to remove corrosion. Do not grind!
- 2. Determine reduction in thickness.
- **3.** If reduction is less than 6% of strap thickness, paint strap to maintain continuous protective coating.
- **4.** If reduction is 6% or more, remove strap from service.



^{≥ =} equal to or greater than

Corrosion or Abrasion

P325

Surface is relatively smooth; within allowable limit.

FIGURE 4-12

Straightness

See Figure 4-13 for the following procedure.

- Stretch a line (string or wire) from pin storage hole at one end of strap.
- 2. Stretch line as tight as possible and tie it off at other end.
- 3. Mark strap center line. Do not use center punch!
- **4.** If string does not align with center line, measure distance from center line to line.

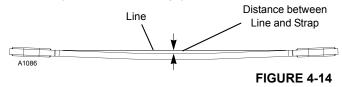
If deviation from straight is greater than maximum allowed, remove strap from service.

Strap Length (L)	Maximum Deviation Allowed
5 to <10 ft (1.5 to <3,0 m)	0.060 in (1,5 mm)
10 to <20 ft (3.0 to <6,1 m)	0.125 in (3,2 mm)

Strap Length (L)	Maximum Deviation Allowed
20 to <30 ft (6,1 to <9,1 m)	0.250 in (6,4 mm)
30 to <40 ft (9,1 to <12,2 m)	0.375 in (9,5 mm)
40 to <50 ft (12,2 to <15,2 m)	0.50 in (12,7 mm)
< = less than	

Straightness (gradual or sweeping bend)	Deviation
Center	line from Straight
A1086 String	
Pin Storage Hole (typical)	FIGURE 4-13

Flatness


See <u>Figure 4-14</u> for the following procedure.

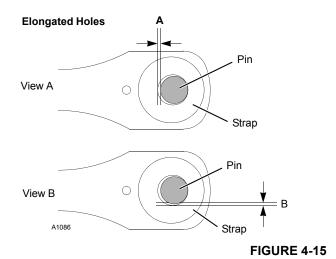
- Lay strap on a flat surface. Do not block, strap may sag!
- 2. Stretch a line (string or wire) across top surface of strap from pin storage hole at one end of strap.
- 3. Stretch line as tight as possible and tie it off at other end.
- **4.** Check that line touches top surface of strap at all points along its length.
- **5.** If string does not touch strap, measure distance from line to strap.

If deviation from straight is greater than maximum allowed, remove strap from service.

- 6. Remove line. Turn strap over.
- 7. Repeat steps 1-5 above.

Flatness (includes twisted straps)

Elongated Hole

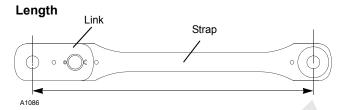

See Figure 4-15 for the following procedure.

- 1. Insert pin into hole.
- 2. Push pin tight against edge of hole along horizontal center line. Measure dimension between pin and hole (View A).

Push pin tight against edge of hole along vertical center line. Measure dimension between pin and hole (View B).

If dimensions A and B are not identical, hole is elongated. Remove strap from service.

If two dimensions are identical, but greater than 0.030 in (0,8 mm), contact factory Service Department.



Maximum Deviation Allowed Strap Length (L) 2 to <4 in (50.8 to 1 to <2 in (25.4 to ft (m) <50.8 mm) Thick <101.6 mm) Thick <3 (<0.9) 0.17(4.3)0.50(12.7)3 to <4 0.63 (15,9) 0.56 (14,3) (0.9 to < 1.2)4 to <5 0.75(19,1)0.70(17.5)(1,2 to < 1,5)5 to <6 0.80(20,6)0.75 (19,1) (1,5 to < 1,8)6 to <7 0.88(22,2)0.75 (19,1) (1,8 to <2,1) 7 to <8 0.94 (23,8) 0.75 (19,1) (2,1 to < 2,4)8 to <9 1.0 (25,4) 0.75(19,1)(2,4 to < 2,7)9 to <10 1.0 (25,4) 0.88(22,2)(2,7 to < 3,0)10 to <12 1.0 (25,4) 1.0 (25,4) (3,0 to < 3,7)

Deviation not to exceed 1 in (25,4 mm)

in any 12 ft (3,7 m) length of strap

≥12 (≥3,7)

Measure to check length. See appropriate Rigging Drawing in Operator Manual for original length. Strap length includes connecting link. If change in length is detected, remove strap from service.

FIGURE 4-16

Storing Straps

Straps should be stored in a protected area. If stored in open, a protective covering is recommended, especially in a corrosive environment (chemicals, salt water spray, etc.).

Inspect straps in storage for corrosion monthly. If necessary, sandblast to remove corrosion and repaint to maintain a continuous protective surface. If corrosion is not removed, strap will have to be removed from service because reduction in thickness will exceed the maximum allowed.

A full periodic inspection is required for straps returned to service from storage.

Removing Straps from Service

Straps removed from service should be clearly marked to prevent accidental future use. Rendering the strap useless in some way, such as cutting off an end, is recommended.

Inspection Checklist

A Strap Inspection Checklist is provided at the end of this section. The checklist can be reproduced as needed.

Signed and dated copies of the Strap Inspection Checklist must be kept on file at all times for each strap, as the checklists may be required to verify warranty or product liability claims.

If no damage is found or damage is within specification, check the box $(\ensuremath{\square})$ next to the item to indicate that its specific condition was evaluated and found acceptable. If damage is not within specification, indicate so in the box next to the item (for example: $\ensuremath{\mathbf{D}}$ to indicate damage).

< = less than

 $[\]geq$ = equal to or greater than

STRAP INSPECTION CHECKLIST

Inspe	ctor's Name		Signature		Date
Length		mm (ft)	Part Number		
	Dents	Kinks	Cracks	Breaks	Corrosion
	Abrasion	Length	Straightness	Flatness	Elongated Holes
	Other				
Length		mm (ft)	Part Number		
	Dents	Kinks	Cracks	Breaks	Corrosion
	Abrasion	Length	Straightness	Flatness	Elongated Holes
	Other				
Length		mm (ft)	Part Number		
	Dents	Kinks	Cracks	Breaks	Corrosion
	Abrasion	Length	Straightness	Flatness	Elongated Holes
	Other				
Length		mm (ft)	Part Number		
	Dents	Kinks	Cracks	Breaks	Corrosion
	Abrasion	Length	Straightness	Flatness	Elongated Holes
	Other				
Length		mm (ft)	Part Number		
	Dents	Kinks	Cracks	Breaks	Corrosion
	Abrasion	Length	Straightness	Flatness	Elongated Holes
	Other				

NOTES	
SKETCHES AND PHOTOGRAPHS	A

LATTICE SECTION INSPECTION AND LACING REPLACEMENT

Refer to Folio 1316 at the end of this section for lattice section inspection and lacing replacement instructions.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 5 HOISTS

TABLE OF CONTENTS

Hoist Drawings	5-1
Boom Hoist Pawl Adjustment	
General	
Actuator Removal	
Actuator Installation and Adjustment	
Mast Hoist Pawl Maintenance	
General	
Maintenance	
Speed Sensor Adjustment	
Hydraulic Motors with Speed Sensors	
Speed Sensor Replacement	
Speed Sensor Adjustment	
Version 1 – Sensor with Flats	
Version 2 – Sensor with Notch in Threads	
Bail Limit Adjustment	
Weekly Maintenance	
Adjustment	
Electrical Wiring	
Block-Up Limit Adjustment	
General	
Operation	
Block-Up Limit Control Deactivated	
Block-Up Limit Control Activated	5-8
Installation	
Load Block Level Transmitter	
Disconnecting Block-Up Limit Control	
Removing Upper Boom Point or Jib Point	
Storing Electric Cable	
Maintenance	
Adjustment	
Wire Rope Inspection and Replacement	
Wire Rope Lubrication	
Maintain a Wire Rope Condition Report	
Required Inspection Intervals	
Wire Rope Care and Replacement Guidelines	
Periodic Comprehensive Inspection	
Determining the Frequency of Inspection	
Replacement Criteria	
Reduction in the Rope Diameter	
Broken Rope Wires	
Rope That Has Been Idle a Month or More	
Distributing Wire Rope Wear	
Sheave, Roller, and Drum Inspection	
Load Block and Hook-and-Weight Ball Inspection	
Daily Inspection	
Yearly Inspection	
i cany mapeonon	5-24

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 5 HOISTS

HOIST DRAWINGS

Applicable hoist and load block drawings are attached at the end of this section.

BOOM HOIST PAWL ADJUSTMENT

General

The boom hoist (Drum 4) has a drum pawl which is a positive locking device. When engaged, the pawl prevents the boom hoist drum from turning in the down direction.

The pawl is engaged and disengaged electrically by a motor driven screw-type actuator controlled by the boom hoist park switch in the operator's cab. A limit switch inside both ends of the actuator turns off the motor when the actuator is fully extended or retracted.

The pawl was adjusted at the factory and should not need adjustment during the service life of the actuator. Adjustment is required when a new actuator is installed.

WARNING

Falling Boom Hazard!

Land loads and lower boom onto blocking at ground level before performing steps in this section. There is no positive means of holding boom up when pawl is being serviced.

ACTUATOR REMOVAL

See Figure 5-1 for the following procedure.

1. Turn off Drum 4 park to disengage pawl (1) and **stop engine**. Actuator (3) will retract.

NOTE: It may be necessary to hoist slightly before the pawl will fully disengage.

- 2. Disconnect electrical cord (4) from actuator (3).
- 3. Loosen jam nut (5) and back out adjusting screw (6) until leaf spring (7) is fully relaxed.

Flying Part Hazard!

Leaf springs are preloaded. Do not proceed to step $\underline{4}$ until step $\underline{3}$ is performed. Parts will fly apart with sudden and dangerous force if spring preload is not relieved.

- **4.** Carefully remove pins (8) securing actuator (3) to lug (9) and bracket (10).
- **5.** If necessary, loosen bracket nuts (11) to loosen actuator pins (8).
- 6. Remove actuator (3).

Actuator Installation and Adjustment

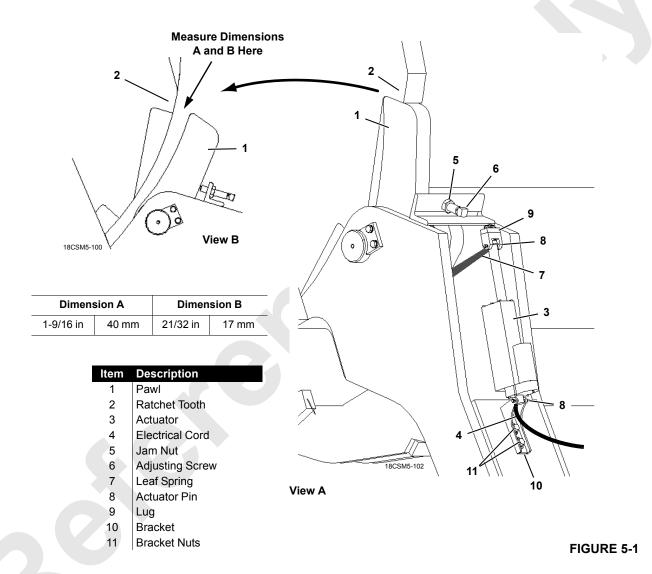
See Figure 5-1 for the following procedure.

- 1. Turn ignition key to RUN position. Do not start engine.
- 2. If necessary, turn on Drum 4 park switch.

Pinch Point Hazard!

Actuator rod will retract when step $\underline{3}$ is performed. To prevent crushing injury to hands, keep actuator clear of all other parts while performing step $\underline{3}$.

- Connect electrical cord (4) to actuator (3). Actuator will retract.
- 4. Pin actuator (3) to bracket (10) and lug (9).
- 5. Set Dimension A (View B):
 - a. Loosen bracket nuts (11).
 - **b.** Adjust position of bracket (10) until Dimension A is obtained between pawl (1) and ratchet tooth (2).
 - **c.** Securely tighten nuts (11) to hold bracket (10) in position.


- 6. Set Dimension B (View B):
 - a. Loosen jam nut (5).
 - b. Turn adjusting screw (6) IN until Dimension B is obtained between pawl (1) and ratchet tooth (2).
 - c. Securely tighten jam nut (5) to lock adjusting screw.
- 7. Operate pawl (1) to make sure that internal limit switches stop actuator motor when actuator (3) is fully

extended and fully retracted and that pawl (1) fully engages and disengages ratchet tooth (2).

CAUTION

Flying Part Hazard!

Actuator must be free to fully extend and retract. Motor will overheat and be ruined if actuator stroke is restricted in either direction.

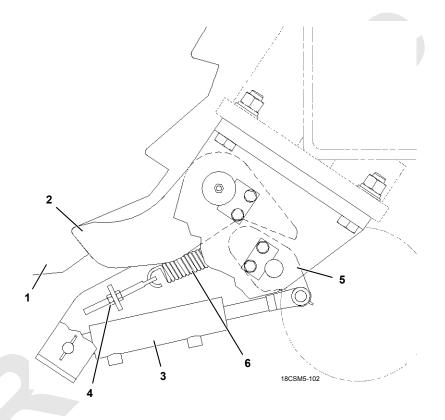
MAST HOIST PAWL MAINTENANCE

General

The mast hoist (Drum 5) has a drum pawl which is a positive locking device. When engaged, the pawl prevents the mast hoist drum from turning in the down direction.

The pawl is controlled by Drum 5 (mast hoist) park switch in the operator's cab:

- When park is turned ON, the pawl engages. The hydraulic cylinder extends and spring force rotates the pawl into engagement with the ratchet.
- When park is turned OFF, the pawl disengages. The hydraulic cylinder retracts, and the cam rotates to disengage the pawl from the ratchet.


It may be necessary to hoist slightly to fully disengage the pawl from the ratchet.

Maintenance

The only maintenance required is to visually check the pawl for proper operation. This should be done daily when the mast hoist is in use.

If necessary, adjust the eye bolts so the spring has sufficient tension to fully engage the pawl with the ratchet.

In some cases, the pawl may come to rest on the top of a ratchet tooth. Spring tension must be sufficient enough to pull the pawl into the root of a ratchet tooth if the drum starts to turn in the down direction.

ltem	Description
1	Ratchet
2	Pawl
3	Hydraulic Cylinder
4	Eye Bolt
5	Cam
6	Spring

View from Right Side of Crane

FIGURE 5-2

SPEED SENSOR ADJUSTMENT

Hydraulic Motors with Speed Sensors

The hydraulic motors for the hoists (boom, mast, load) have a speed sensor. For those functions having more than one motor, only one of the motors has a speed sensor.

Each speed sensor monitors rotational speed and direction of the corresponding function's motor. The sensor sends the signal to a remote node controller that transmits the information to the crane's master controller. The master controller uses the information to control the crane function.

Speed Sensor Replacement

WARNING

Hot Oil!

Hot oil will drain from motor port when sensor is removed. Wait for hydraulic oil to cool before removing sensor.

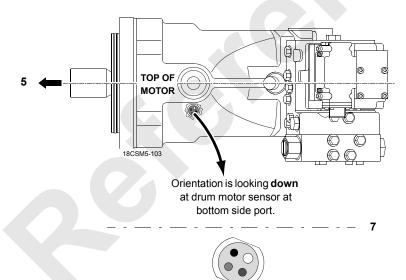
When removing the speed sensor from a motor. Be careful to contain the hydraulic fluid that will drain from the motor. After installing a new sensor, add clean hydraulic oil to the level of the motor's top case drain port **before starting engine**.

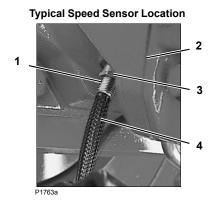
Speed Sensor Adjustment

The speed sensors are set at the factory and should not need adjustment, unless replaced.

Version 1 - Sensor with Flats

See Figure 5-3 for the following procedure.


- Bring corresponding function to a complete stop, land suspended load if load drum is being serviced, and PARK function.
- 2. Remove faulty sensor. Do not connect sensor cable to crane wire harness until initial adjustment is made.
- Loosen lock nut and carefully turn sensor in (clockwise) by hand until it gently contacts speed ring inside motor.
- Back sensor out (counterclockwise) 1/4 turn or more until flat on sensor is positioned as shown in Figure 5-3.
- 5. Connect sensor cable to crane wire harness.
- **6.** Operate drum motor and check for a steady drum speed (rpm) signal on drum screen in cab.


If necessary, turn sensor out slightly until drum speed (rpm) is steady at low and high rpm.

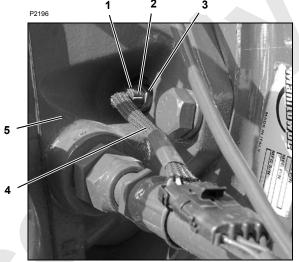
- Check for proper drum direction (+/-) on corresponding drum screen.
 - + (plus) = RAISE
 - (minus) = LOWER

If proper direction is not indicated, turn sensor out 180°.

- 8. Repeat step 6.
- 9. Hold sensor in position and securely tighten lock nut.

ltem	Description
1	Flat on Sensor
2	Motor
3	Lock Nut
4	Cable
5	Gearbox
6	Flat
7	Centerline of Motor

FIGURE 5-3



Version 2 - Sensor with Notch in Threads

See Figure 5-4 for the following procedure.

- Bring corresponding function to a complete stop, land suspended load if load drum is being serviced, and PARK function.
- 2. Remove faulty sensor. Do not connect sensor cable to crane wire harness until initial adjustment is made.
- **3.** Loosen lock nut and carefully turn sensor in (clockwise) by hand until it gently contacts speed ring inside motor.
- **4.** Back sensor out 1 turn or more until notch is positioned 180° from motor shaft (facing outboard side of motor).
- 5. Connect sensor cable to crane wire harness.
- **6.** Operate drum motor and check for a steady drum speed (rpm) signal on drum screen in cab.
 - If necessary, turn sensor out slightly until drum speed (rpm) is steady at low and high rpm.
- 7. Hold sensor in position and securely tighten lock nut.

ltem	Description
1	Speed Sensor
2	Notch
3	Lock Nut
4	Cable
5	Motor

Typical Speed Sensor Location

FIGURE 5-4

BAIL LIMIT ADJUSTMENT

NOTE: Reference to LED is past production.

The optional minimum bail limit assembly on Drum 1 (main hoist in insert), Drum 2 (main hoist in boom butt), and Drum 3 (whip hoist on crane) is a protective device which limits how much wire rope can be spooled off the corresponding drum.

The minimum bail limit automatically stops the corresponding drum when there are 3 to 4 wraps of wire rope remaining on the first layer. The drum can be operated in the hoist direction when the minimum bail limit switch is contacted.

Adjusting the minimum bail limit switch requires operating the drum to spool wire rope off the drum.

Do not operate drum with less than 3 to 4 full wraps of wire rope remaining on drum. Doing so can cause wire rope to be pulled out of drum and load to fall.

Weekly Maintenance

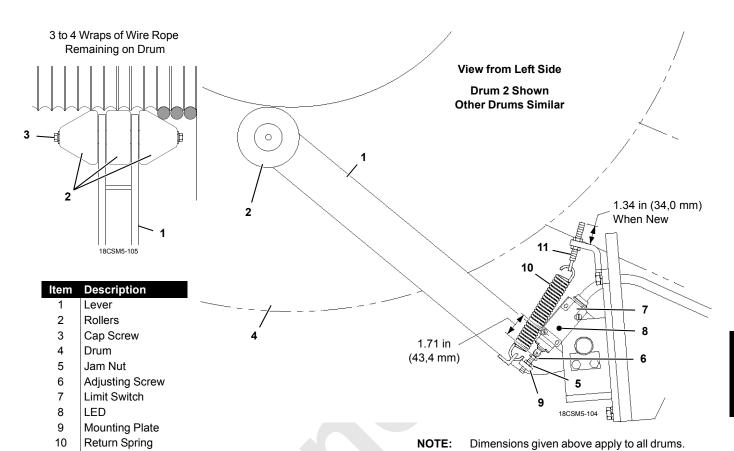
- 1. Check minimum bail limit switch for proper operation.
 - **a.** LED (light emitting diode) should be on for normal operation.
 - **b.** Pay out wire rope from drum. Drum should stop with approximately 3 to 4 wraps of wire rope remaining

on first layer (LED off). Adjust limit switch if necessary.

- Check that cap screws holding rollers on lever shaft are tight.
- **3.** Check tension of return springs. If necessary, adjust eyebolts so springs hold rollers snug against bare drum.

Adjustment

- **1.** Pay out wire rope until rollers are against bare drum with 3 to 4 wraps of wire rope remaining on first layer.
- Turn adjusting screw in (toward mounting plate) until LED is on.
- Turn adjusting screw out against limit switch roller until limit switch clicks open (LED off) and stop — should be at approximate dimension given in Figure 5-5.
- Spool several wraps of wire rope onto drum. Then pay out wire rope. Drum must stop with 3 to 4 wraps of wire rope remaining first layer.


Repeat adjustment steps if necessary.

- Tighten jam nut against mounting plate to lock adjustment.
- Check that return springs have sufficient tension to hold rollers snugly against bare drum. Adjust eyebolts if necessary.

Electrical Wiring

See Figure 5-5 for limit switch electrical wiring diagram.

Limit Switch Wiring

Receptacle		Switch ermina		Function
1 (green)	22	В	14	Max Angle
2 (black)	Α	13		LED
3 (white)	21			12 VDC Supply

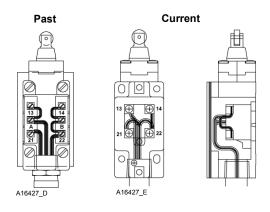


FIGURE 5-5

11

Eyebolt

BLOCK-UP LIMIT ADJUSTMENT

General

A block-up limit (also called anti two-block device) is a **two-blocking prevention device** which automatically stops the load drum from hoisting and the boom from lowering when a load is hoisted a predetermined distance.

DEFINITION: Two-blocking is the unsafe condition in which the load block or the weight ball contacts the sheave assembly from which either is suspended.

Two-blocking can result in failure of sheaves and wire rope, possibly causing load to fall.

WARNING

Two-Blocking Hazard!

Block-up limit is a protective device designed only to assist operator in preventing a two-blocking condition. Any other use is neither intended nor approved.

Block-up limit may not prevent two-blocking when load is hoisted at maximum single line speed. Operator shall determine fastest line speed that allows block-up limit to function properly and, thereafter, not exceed that line speed.

The block-up limit system consists of the following components (see Figure 5-6):

- Normally closed limit switch assembly fastened at any or all of the following locations:
 - a. Lower boom point
 - **b.** Upper boom point
 - c. Lower luffing jib point
 - d. Upper luffing jib point
 - e. Fixed jib point
- 2. Weight freely suspended by chain from each limit switch actuating lever (weight encircles load line as shown in Figure 5-8).
- 3. Lift block fastened to load line or lift plates fastened to load block (see <u>Figure 5-8</u>).

Operation

See <u>Figure 5-6</u> through <u>5-10</u> for component identification.

See the wiring diagram in the Boom Wiring and Limits Electrical Control Assembly drawing in this manual.

Block-Up Limit Control Deactivated

During normal operation, the weight overcomes spring force and rotates the actuating lever away from the limit switch lever. This action allows the limit switch to close the load drum UP and boom DOWN electric circuits. Therefore, the load can be hoisted and the boom can be lowered.

Block-Up Limit Control Activated

When the weight is lifted by the lift block or the lift plates, spring force rotates the actuating lever against the limit switch lever. This action causes the corresponding limit switch to open the load drum UP and boom DOWN electric circuits.

The load drum and boom hoist pumps stroke to off. At the same time, the load drum and boom parking brakes apply to stop load drum from hoisting and boom from lowering.

Installation

See Figure 5-8 for installation of the weights.

The block-up limit controls must be installed according to the Boom Wiring and Limits Electrical Control Assembly drawing in this manual.

Load Block Level Transmitter

See <u>Figure 5-6</u> for the following procedure.

The optional load block level transmitter is only used with tandem drum operation. See load block level screen topic in Section 3 of this manual. The wireless screen on digital display indicates load block level battery status.

- The load block level transmitter is mounted on block as shown in <u>Figure 5-6</u>, Item 14. Locate on block where there are no obstructions between transmitter and receiver on boom top.
- When reeved, load block level transmitter must be on left side of load block when viewed from operator's cab.
- Use a smart level to check level sensor zero and compare to block angle on Level screen. If a zero adjustment is required, follow adjustment procedure.
- **4.** Past Production adjustment procedure.
 - a. Open enclosure
 - **b.** If European Standard transmitter is used, *press to install button* must be pressed to enable.
 - c. Loosen screw on each side of sensor (<u>Figure 5-6</u>, Item 15) and turn sensor slightly either way until sensor is zeroed.
 - **d.** Tighten screws on each side of sensor when adjustment is complete.
 - e. Close enclosure

5. Current Production adjustment procedure:

NOTE: The angle sensor and printed circuit board are a matched set. The zero adjustment potentiometer on the printed circuit board must not be readjusted.

It is recommended two people perform this adjustment procedure.

- a. When replacing the angle sensor and printed circuit board, remove batteries and install the new angle sensor and printed circuit board with the angle sensor loosely mounted for adjustment rotation. Mount angle sensor in position shown.
- b. Install batteries.
- c. Adjust the block level controller assembly box as needed such that box mounting surface (backside) is 90 degrees to the horizontal mounting surface of the load block assembly.

- d. Turn cab power on and scroll to the Level screen for the block level sensor and block level angle diagnostic display readings (see Section 3, Crane Diagnostics, Block Level Sensor topic).
- e. While one person is monitoring the block level diagnostic display in the operator cab, the second person rotates the angle sensor in the block level controller assembly until 0 degrees is achieved on display screen.
- f. Carefully tighten angle sensor mounting hardware.
- g. Confirm angle sensor reading on diagnostic display remains 0 degrees.
- **h.** Close block level controller assembly cover ensuring proper seal and fasten screws (2 each).

Six *Lithium* type size D batteries are recommended for longer battery life.

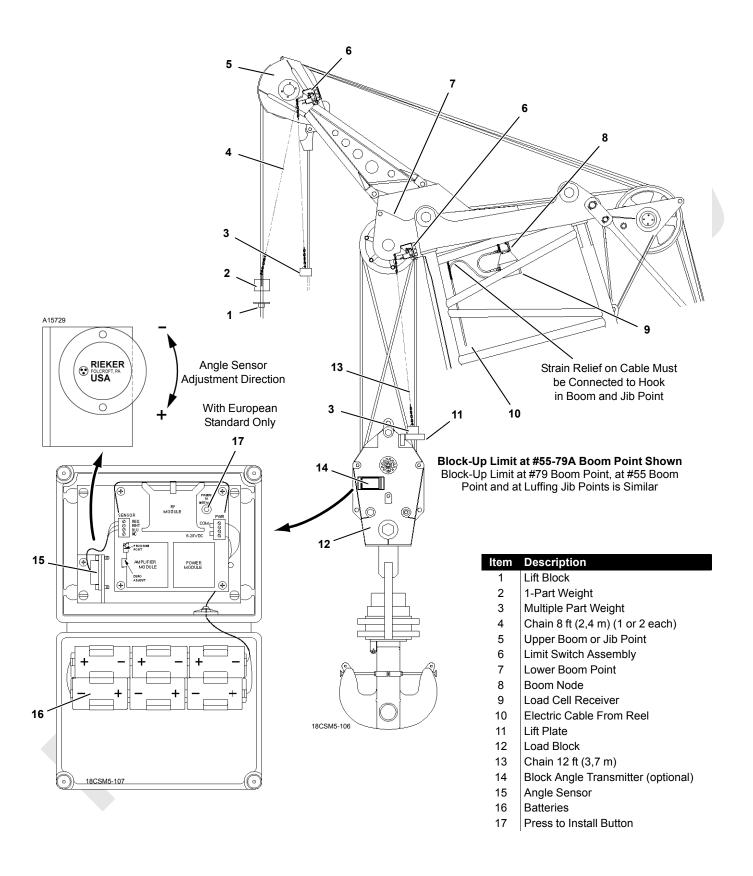
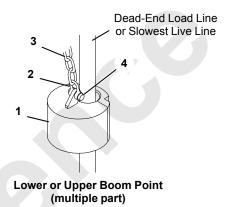
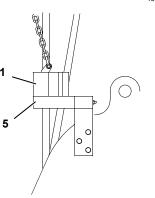
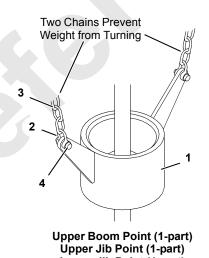


FIGURE 5-6




18CSM5-108

		Typical	
Item	Description	Boom Butt or	_ 1
1	Electric Cable	Luffing Jib Butt	
2	Cable Reel	\	
3	Cable	DET.	
4	Fixed Jib Butt		
5	Brackets		
ū	1 2.00.010		
4	5		
1			
/			
//			
		2	
	3		
	()		FIGURE 5-7


18CSM5-109

tem	Description
1	Weight
2	Shackle
3	Chain
4	Connecting Pin
5	Lift Plate
6	Lift Block

See Load Block Reeving for Suggested Location of Weight

Lower Jib Point (1-part)

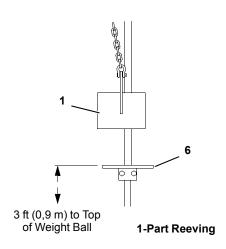


FIGURE 5-8

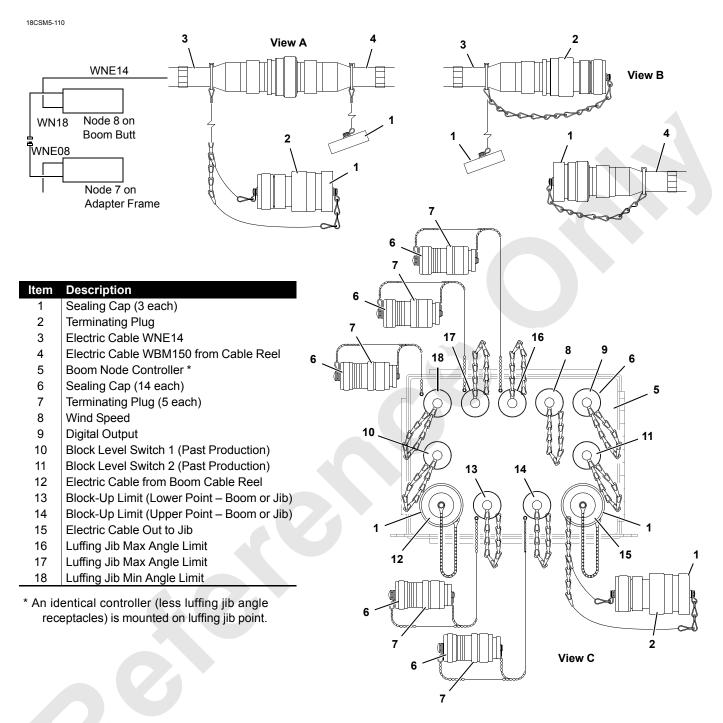


FIGURE 5-9

Disconnecting Block-Up Limit Control

See Figure 5-9 for the following procedure.

Terminating plug (2, Views A and B) is provided so the blockup limit control can be disconnected for the following reasons:

- Crane setup and rigging
- Maintenance

If electric cable (3) is terminated, all of the block-up limits (on boom and jib), the RCL, and the wind speed indicator will be inactive.

- Unscrew sealing cap (1, View A) from terminating plug (2).
- 2. Disconnect electric cable (3, View B) from cable (4).
- 3. Connect sealing cap (1, View A) to electric cable (4).
- Connect terminating plug (2, View B) to electric cable (2).

Failing to perform this step will prevent load drums from hoisting and boom from lowering. Operating limits alert will come on.

5. Reverse above steps to reconnect the block-up limits, the RCL, and the wind speed indicator.

Removing Upper Boom Point or Jib Point

See Figure 5-9 for the following procedures.

Failing to perform the following steps will prevent load drums from hoisting and boom (or luffing jib) from lowering. Also operating limits alert will come on.

Remove terminating plugs and reconnect electric cables to proper receptacles when corresponding attachment is reinstalled.

If upper boom point, upper luffing jib point, or fixed jib is removed:

- 1. Disconnect cable from receptacle (14, View C).
- 2. Unscrew sealing cap (6, View C) from terminating plug (7) and attach to receptacle (14).
- Connect sealing cap to end of cable and store on upper boom point or upper jib point.

If the luffing jib is removed:

- Unscrew sealing cap (1, View C) from terminating plug (2).
- 2. Disconnect cable from receptacle (15, View C).
- 3. Connect terminating plug (2, View C) to receptacle (15).
- Connect sealing cap to end of cable and coil cable onto cable reel (luffing jib butt).
- **5.** Remove sealing caps (7, View C) from terminating plugs (6) and connect terminating plugs to jib stop receptacles (16, 17, and 18).

Storing Electric Cable

See <u>Figure 5-2</u> for the following procedure.

The electric cables for the boom and jib are long enough to accommodate the maximum length of each attachment.

Store excess electric cable for the boom and luffing jib by winding it onto the reel mounted on the respective butt. The reel has a locking pin. Disengage the locking pin to allow the reel to be wound. Engage the locking pin to lock the reel in position. The electric cable from the crane to the reel must be disconnected before the reel can be wound.

Store excess electric cable for the fixed jib by winding it around the brackets on the fixed jib.

Maintenance

Inspect and test the block-up limits weekly or every 40 hours of operation, as follows:

CAUTION

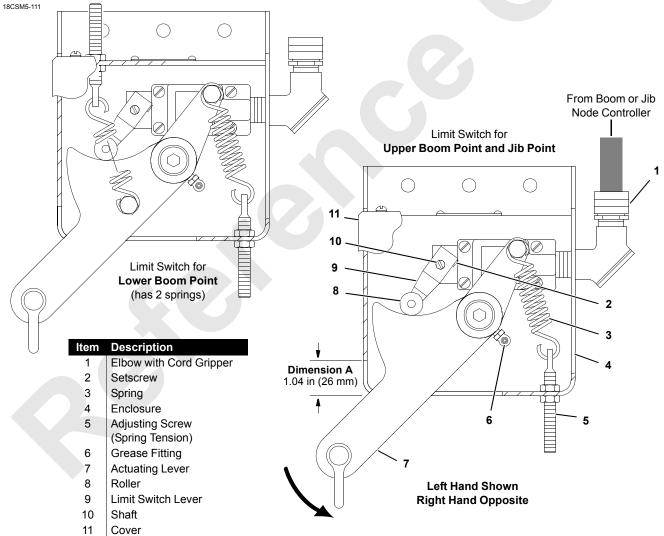
Avoid Machinery Damage!

To prevent two-blocking from occurring, do not operate crane until cause for improper operation and all hazardous conditions have been found and corrected.

- Lower the boom and jib onto blocking at ground level and carefully inspect the following items:
 - Inspect each limit switch lever and actuating lever for freedom of movement. Apply one-half shot of grease to fitting on the actuating lever; wipe away any excess grease.
 - **b.** Inspect each weight for freedom of movement on the load line.
 - c. Inspect each weight, chain, shackle and connecting pin for excessive or abnormal wear. Make sure cotter pins for shackles are installed and spread.
 - **d.** Inspect entire length of each electric cable for damage.
 - **e.** Check that electric cables are clear of all moving parts on boom and jib and that cables are securely fastened to boom and jib with nylon straps.
 - f. Check that all plugs are securely fastened.
- **2.** Test block-up limits for proper operation using either of the following methods:
 - a. BOOM LOWERED: Manually lift each weight one at a time — while engine is running. Load drum should not operate in HOIST direction and boom hoist should not operate in LOWER direction.
 - b. BOOM RAISED: Slowly hoist each load block and weight ball one at a time against weight. When chain goes slack, corresponding load drum should stop HOISTING and boom hoist should not operate in LOWER direction.

CAUTION

Avoid Sheave Damage!


Use extreme care when testing block-up limits when boom is raised. If a block-up limit fails to stop load, immediately stop load by moving drum control handle to off. Otherwise, two-blocking may occur.

Adjustment

See Figure 5-10 for the following procedure.

Lower boom onto blocking at ground level and adjust each limit switch as follows:

- Adjust spring tension so there is enough force to lift weight of chain and rotate actuating lever when weight is lifted.
- Loosen setscrew in limit switch lever so lever is free to rotate.
- Manually lift weight to allow actuating lever to rotate upward.
- 4. Hold lever at Dimension A.
- Hold roller on limit switch lever against actuating lever while performing step 6.
- Turn limit switch shaft CLOCKWISE only enough to "click" limit switch open and hold. Then securely tighten setscrew in limit switch lever.
- Test limit switch for proper operation (see Maintenance topic). Repeat adjustment steps until limit switch operates properly.

FIGURE 5-10

WIRE ROPE INSPECTION AND REPLACEMENT

The following information is from various wire rope manufacturers and includes inspection, replacement, and maintenance guidelines for wire rope as established by ANSI/ASME B30.5, federal regulations, and Manitowoc Cranes.

Wire Rope Lubrication

Refer to the lube folio for lubrication techniques.

Do not use grease to lubricate wire rope. Grease will not penetrate the rope properly and will build up in the valleys between the wires and strands. This buildup will inhibit rope inspection and could trap moisture in the rope's interior.

A high-quality wire rope lubricant is available from the Manitowoc Crane Care Lattice Team. Otherwise, consult your wire rope supplier.

Maintain a Wire Rope Condition Report

Always keep on file a signed and dated periodic inspection report of the wire rope's condition. The report must cover all inspection points discussed in this section. The information in the reports can then be used to determine when a wire rope should be replaced.

After initial loading of a new rope, measure and record its diameter for comparison with future inspections. Measure the rope's diameter across the crowns of the strands so the true diameter is measured as shown in <u>Figure 5-12</u>.

Wire rope removed from service should be examined and a corresponding report kept. This information can be used to establish a relationship between visual inspection and the rope's actual internal condition at the time of its removal from service. See Replacement Criteria for inspection guidelines.

Required Inspection Intervals

The frequency of wire rope inspection must be:

Daily (see Daily Inspection)

and, at minimum:

Yearly (see Periodic Comprehensive Inspection)

Wire Rope Care and Replacement Guidelines

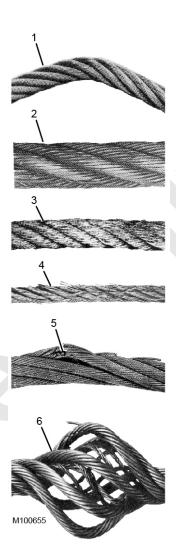
- When replacing fixed-length wire rope assemblies (such as pendants) having permanently attached end fittings, use only pre-assembled lengths of wire rope as supplied from Manitowoc. Do not build lengths from individual components.
- **2.** Replace an entire wire rope assembly. Do not attempt to rework damaged wire rope or wire rope ends.
- 3. Never electroplate a wire rope assembly.

4. Do not weld any wire rope assembly or component unless welding is recommended by the wire rope manufacturer.

Welding spatter must never be allowed to come in contact with the wire rope or wire rope ends. In addition, be sure that the wire rope is not an electrical path during other welding operations.

- Wire ropes are manufactured from special steels. If heating a wire rope assembly is absolutely necessary for removal, the entire wire rope assembly must be discarded.
- **6.** On systems equipped with two or more wire rope assemblies operating as a matched set, they must be replaced as an entire set.
- **7.** Do not paint or coat wire ropes with any substance except approved lubricants.

Daily Inspection


Wire rope should be inspected in accordance with ANSI/ ASME B30.5 and OSHA 29 CFR 1926.1413. A running record of the condition of each wire rope should be noted in the equipment inspection log.

Prior to conducting an inspection of wire rope:

- Lock out the equipment power when removing or installing the wire rope assemblies.
- Use safety glasses for eye protection.
- Wear protective clothing, gloves, and safety shoes as appropriate.
- Use supports and clamps to prevent uncontrolled movement of the wire rope, parts, and equipment.
- 1. Each work day, prior to crane work, visually inspect all rope that can reasonably be expected to be used that day. Check for obvious damage, including:
 - Rope defects such as shown in Figure 5-11
 - Loss of rope diameter (see <u>Reduction in the Rope</u> <u>Diameter</u>)
 - Broken wires—Record the number, distribution and type of broken wires (see <u>Broken Rope Wires</u>).
 - Internal wear or broken wires for ropes operating on synthetic sheaves. Common indicators of internal deterioration include localized reduction in rope diameter, corrosion between the strands, localized lengthening of lay, wire displacement, or wire distortion.

- End fitting wear/abrasion
- Minor or general corrosion
- Areas that deteriorate more rapidly, such as the flange points, the crossover points, and the repetitive pickup points on drums
- Take special care to observe the boom hoist ropes and rotation-resistant ropes for evidence of core failure or other deterioration (remove from service)
- Internal deterioration of rotation-resistant ropes may not be readily observable
- **2.** Throughout the day, observe the wire rope during operation, particularly:
 - Pick-up Points—Sections of the wire rope that are repeatedly stressed during each lift, such as the sections that are in contact with the sheaves
 - End Attachments—The point where a fitting is attached to the wire rope or the point where the wire rope is attached to the drum.
 - Abuse Points—The point where the wire rope is subjected to abnormal scuffing and scraping.

	Description
1	Dog-Leg or Kink Drum Abrasion Drum Crushing Sheaves Too Small
2	Drum Abrasion
3	Drum Crushing
4	Sheaves Too Small

Bird Cage (sudden release of load)

Corrosion

FIGURE 5-11

Periodic Comprehensive Inspection

The comprehensive inspection must be done by a qualified person. The inspection must include pulling all the rope off the drum and carefully inspecting the entire length.

The inspection must include:

- All points listed under Daily Inspection
- Inspection of the rope diameter (see <u>Reduction in the</u> Rope <u>Diameter</u>)
- Comprehensive examination for broken wires (see Broken Rope Wires)
- End connections: Check for broken wires or severely corroded, cracked, bent, worn, or improperly applied end connections.
- Areas subjected to rapid deterioration such as:
 - Sections in contact with saddles, equalizer sheaves, or other sheaves where the wire rope travel is limited
 - Sections of the wire rope at or near the terminal ends where corroded or broken wires may protrude
- Inspection of the boom sheaves, hook block sheaves, gantry/mast sheaves, boom extension/jib sheaves, jib strut sheaves, and hoist drums for wear

NOTE: Damaged sheaves or hoist drums can accelerate wear and cause rapid deterioration of the wire rope.

Any damage of the wire rope found must be recorded and a determination made as to whether continued use of the rope is safe. Refer to Replacement Criteria.

WARNING Falling Load Hazard

- As a wire rope approaches the end of its useful life, do inspections more frequently.
- All wire rope will eventually deteriorate to a point where it is no longer usable.
- A comprehensive inspection of each wire rope must be performed at least once a year.

Determining the Frequency of Inspection

Intervals for comprehensive inspections may vary from machine to machine. The inspection interval must be determined by a qualified person and be based on such factors as:

• Expected rope life as determined by experience on the particular installation or similar installations

- Size, nature, and frequency of lifts
- Rope maintenance practices
- · Severity of the environment, such as:
 - Variation in the temperature
 - Continuous excessive moisture levels
 - Exposure to corrosive chemicals or vapors
 - Subjecting the wire rope to abrasive material
 - Power line contact
- Exposure to abuse and shock loads, such as:
 - High-velocity movement, such as hoisting or swinging a load followed by abrupt stops
 - Suspending loads while traveling over irregular surfaces such as railroad tracks, potholes, and rough terrain
 - Moving a load that is beyond the rated capacity of the lifting mechanism (overloading)

NOTE: Inspection intervals may also be pre-determined by state and local regulatory agencies.

Replacement Criteria

The decision as to when a wire rope should be replaced is the responsibility of the qualified person who is appointed to review rope inspection records and evaluate rope condition.

The following are indications that the rope needs to be replaced:

- Reduction in the rope diameter and excessive broken wires. See Reduction in the Rope Diameter and Broken Rope Wires below.
- Wear of one-third of the original diameter of outside individual wires
- Kinking, crushing, birdcaging, or any other damage resulting in distortion of the rope structure
- Evidence of any heat damage from any cause
- Severe corrosion as evidenced by pitting
- Independent wire rope core (IWRC) or strand core protrusion between outer strands
- Obvious damage exists from any heat source to include —but not limited to—welding, power line strike, or lightning

Reduction in the Rope Diameter

A reduction in rope diameter is often the first outward sign that the rope core is damaged. Reduction in the rope diameter can be caused by loss of core support, internal or external corrosion, or wear of the outside wires. New Wire Rope—After initial loading, measure and record the diameter of any new wire rope for comparison to future inspections. See <u>Maintain a Wire Rope Condition Report</u>.

The wire rope must be taken out of service when the reduction from its nominal diameter is more than 5 percent.

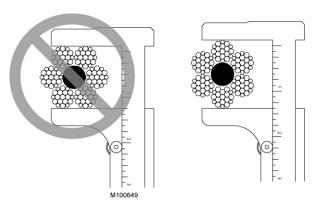


FIGURE 5-12

Broken Rope Wires

When conducting the Periodic Comprehensive Inspection, thoroughly clean the wire rope so breaks can be seen. Relax the rope, move it off "pick-up points," and flex it as much as possible. Use a sharp awl to pick and probe between the wires and strands, lifting any wire which appears loose or moves excessively. **Do not open strands of rotation-resistant rope.**

Wire breaks are typically at the crown of the strands—the area that contacts the sheave or drum when a load is picked up. Breaks at the crown will appear as small gaps in a wire. In comparison, when wires in the valley of a strand break, the broken ends will rise up and are easier to notice.

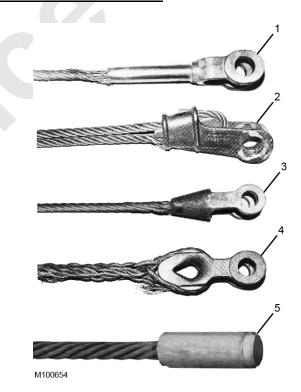
NOTE: The Daily Inspection does not require that the rope be cleaned or probed.

The wire rope must be taken out of service when it has the following number of broken wires:

See Figure 5-14 for an explanation of lay length.

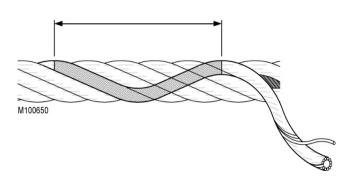
- Running Ropes—six randomly broken wires in one lay length or three broken wires in one strand in one lay length.
- Standing Ropes (Pendants)—more than two broken wires in one lay length in sections beyond the end attachment, or more than one broken wire at the end attachment (see <u>Figure 5-13</u>).
- Rotation-resistant Rope—two randomly distributed broken wires in six rope diameters or four randomly distributed broken wires in 30 rope diameters.

- All Ropes—one outer wire broken at the point of contact with the core and protrudes or loops out of the rope structure—additional inspection is required.
- End Attachments (<u>Figure 5-13</u>)—when more than one broken wire appears at the attachment, replace the rope or cut off the affected area and reattach the fitting.


NOTE: For galvanized bridle strand wire rope pendants— United States Steel states "Replacement criteria for galvanized strand boom suspension pendants are 25 percent of the outer wires fractured, or 10 percent of the total numbers, whichever comes first."

WARNING Falling Load Hazard

Replace wire rope when more than one broken wire appears at point marked by arrow.


Item Description

- 1 Swagged Socket
- 2 Wedge Socket
- 3 Poured Zinc Socket
- 4 Hand-spliced Socket
- 5 Button Socket

FIGURE 5-13

Item Description

- Lay Length: distance in which one strand makes one complete revolution around core.
- 2 Core
- 3 Strand
- 4 Wire

FIGURE 5-14

Rope That Has Been Idle a Month or More

Wire rope must be given a complete inspection if it has been idle for a month or more. The inspection must be performed by a qualified inspector looking for the damage identified under both Daily and Periodic Comprehensive Inspection.

NOTE: Wire rope may be purchased through the Manitowoc Crane Care Lattice Team.

Replacement wire rope can break if it does not meet Manitowoc specifications given in the following publications supplied with your crane:

- Wire Rope Specifications Chart located in the Capacity Chart Manual (for load lines)
- Boom or Jib Assembly drawings located in the Operator Manual (for boom or luffing hoist)
- Mast Assembly drawing located in the Parts Manual

Distributing Wire Rope Wear

Wire rope wear at the "critical wear points" can be reduced and the life of the wire rope extended by moving the rope at regular intervals so different sections of the rope are subjected to the wear points. This practice can also help correct spooling problems and rope vibration. To move the wire rope, cut off a piece of the rope at the worn end and refasten. The piece should be long enough to move the wire rope at least one full drum wrap.

If the wire rope is too short to allow cutting off a piece, reverse the rope end for end and refasten it.

SHEAVE, ROLLER, AND DRUM INSPECTION

Perform the following inspections weekly:

- **1.** Check the drum clutches and the brakes for proper adjustment.
- Check all sheaves, rollers, and drums for the following conditions:
 - Unusual noises
 - Freedom of movement—must turn freely by hand.
 Wire rope may have to be loosened to perform this inspection.
 - Wobble—must turn true with very little side-to-side or up-and-down play.
 - Signs of rust (indicating that water may have entered bearing)
 - Grease leaks (indicating a faulty seal or water in grease)


The above problems indicate bearing damage. If found, the corresponding sheave, roller, or drum should be disassembled for further inspection. New bearings should be installed.

For sheaves not equipped with grease fittings, be sure to pack the new bearings with grease at assembly.

- For steel sheaves, check the depth, width, and contour
 of each sheave using a groove gauge as shown in
 Figure 5-15. Replace the sheaves that have over or
 under size grooves.
- Replace any grooved drums that allow one wrap of the wire rope to contact the next wrap as the rope spools onto the drum.
- 5. Inspect the sheaves to verify they do not contact another sheave or structural plate work. There should be uniform clearance between sheaves in a cluster. Repair or replace worn or damaged sheaves.
- **6.** Remachine or replace steel sheaves, drums, or rollers that have been corrugated by the wire rope's print Figure 5-16.
- Measure the nylon sheaves for excessive tread wear. See <u>Figure 5-18</u>. To check for uneven wear, measure at three places.

Wear must not exceed the limit given. Replace worn or damaged sheaves.

Observe the groove to see if the contour of the gauge matches the contour at the bottom of the sheave groove.

Groove Too Small

Groove Too Large

Proper fitting sheave groove should support the wire rope or 135–150° of rope circumference.

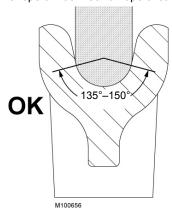
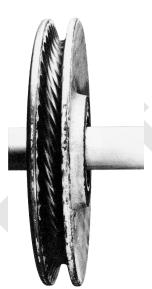



FIGURE 5-15

"Corrugated" steel sheave, roller, or drum will cause the wire rope to wear rapidly. 8. Inspect the nylon sheaves to verify they have not separated and "walked off" the steel inserts or the bearings as shown in <u>Figure 5-17</u>. Maximum sideways displacement is 3 mm (1/8 in.). Replace worn or damaged sheaves.

NOTE: Depending on the type of wire rope used, it is normal for nylon sheaves to show the wire rope print. **Do not machine the nylon sheaves**.

NOTE: Nylon sheaves cannot be accurately inspected using conventional methods such as sheave gauges.

Due to the characteristics of nylon sheaves, the nylon material will actually move to better support the wire rope as the sheave wears normally.

Nylon sheave properties will be degraded in temperatures above 60° C (140°F).

NOTE: Many current production sheaves are not equipped with grease fittings, but are packed with grease at assembly. Repack the bearings of these sheaves with CraneLUBE EP #2 grease when the sheaves are overhauled.

Due to application and design variations, it is not possible to give specific grease repacking intervals or the life expectancy of the components.

9. Make sure the sheaves, drums, and rollers are properly lubricated according to the instructions in the lubrication guide provided with this manual.

NOTE: For some sheaves, the seals are an integral part of the bearing. Therefore, if a seal is damaged during repacking, the complete bearing may have to be replaced.

Item Description

- 1 Nylon Sheave
- 2 Improper Snap Ring Engagement
- 3 Steel Insert of Bearing
- 4 1/8 in (3 mm) Maximum Sideways Displacement

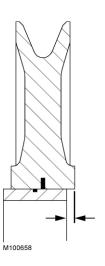
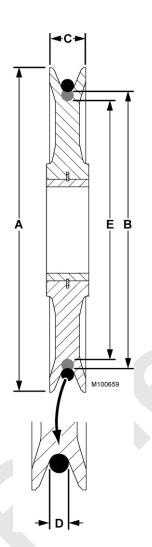



FIGURE 5-17

FIGURE 5-16

B = tread diameter, new sheave
E = tread diameter, used sheave
B minus E = total wear
If total wear is 5 mm (3/16 in) or more,
the sheave should be replaced.
If a tread print exists in the root of the
sheave groove, measure to the
maximum tread diameter.

		ı	PLASTIC	SHEAVI	E DATA			
	mm	inch	mm	inch	mm	inch	mm	inch
912738	335	13.19	290,1	11.42	45	1.77	16	5/8
631056								
631054	335	13.19	290,1	11.42	45	1.77	22	7/8
631065	406,4	16	339,6	13.37	55,1	2.17	14	9/16
631071	406,4	16	352,6	13.88	55,1	2.17	16	5/8
						_		
631526	489	19.25	422,4	16.63	50,8	1.94	22	7/8
631527	489	19.25	422,4	16.63	50,8	1.94	16	5/8
631055	500,1	19.69	447	17.60	47	1.85	22	7/8
631067	500,1	19.69	450,9	17.75	50	1.97	19	3/4
631529	508	20	431,8	17.00	76,2	3	25	1
631519	584,2	23	511	20.13	57,2	2.25	22	7/8
631520								
631084	584,2	23	511	20.13	63,5	2.50	22	7/8
A00083								
631102	584,2	23	511	20.13	63,5	2.50	25	1

FIGURE 5-18

LOAD BLOCK AND HOOK-AND-WEIGHT BALL INSPECTION

WARNING Falling Load Hazard

To prevent the load from dropping due to structural failure of load block or hook-and-weight ball:

- Only use a load block or a hook-and-weight ball which has a capacity equal to or greater than the load to be handled.
- Do not remove or deface the nameplate (<u>Figure 5-19</u>) that is attached to the load blocks and hook-andweight balls.
- See Section 4 of the Operator Manual for recommended sling angles and capacity restrictions when the load block has a duplex or a quadruplex hook.

Daily Inspection

The operating condition of the load block and the hook-and-weight ball can change daily with use, and so they must be inspected daily (at start of each shift). During operation, observe for any defects which could affect their safe operation. Correct all defects before using the load block or the hook-and-weight ball.

Daily inspection and maintenance will include the following points (see Figure 5-20 and Figure 5-21):

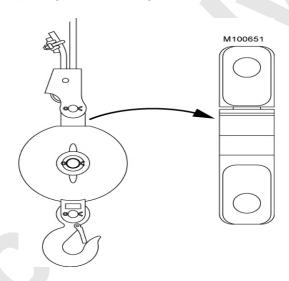
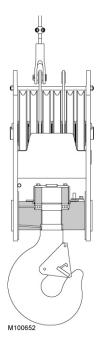



FIGURE 5-20

Item	Description
1	Socket and Wedg
2	Center Plates
3	Tie Bolt
4	Sheaves
5	Sheave Shaft
6	Name Plate
7	Locking Cap
8	Hook Nut
9	Trunnion
10	Thrust Bearing
11	Latch
12	Hook

FIGURE 5-21

- 1. Clean the load block or the hook-and-weight ball.
- 2. Lubricate the sheaves (if fittings provided), the hook trunnion, the hook swivel, and any other part equipped with a grease fitting at the intervals specified in the "Lubrication Guide."
- **3.** Tighten any loose tie-bolts, cap screws, and set screws. Check that all the cotter pins are installed with the legs opened and trimmed.
- **4.** Check the sheaves for uneven wear in the grooves and on the flanges. Check for loose or wobbly sheaves. These conditions indicate faulty bearings or bushings.
- **5.** Check the fit of the wire rope in the groove of each sheave.
 - An oversize wire rope can crack the lip of the sheave flange causing rapid wear of the wire rope and sheave.
 - The groove must be larger than the wire rope, and the groove must be free of rough edges and burrs.

- **6.** Check that the hook, the trunnion, and the swivel rotate freely without excessive play. Faulty operation indicates faulty bushings or bearings or inadequate lubrication.
- **7.** Check the swivel of the hook-and-weight ball for the following conditions:
 - Overloading: Spin the swivel by hand. If the motion is rough or has a ratchet-like effect, the swivel bearings are damaged.
 - Side loading: This can cause the swivel to turn freely in one spot and lock-up in another.

This condition can also be checked by checking the gap (4c, Figure 5-20) between the barrel and shank (To check, the swivel must be removed from the weight ball).

If the gap is wide on one side and closed on the other side, damage is present.

NOTE: The gap between the barrel and the shank is normally 0,5 mm (0.02 in) to 1,3 mm (0.05 in). If the gap increases, swivel-bearing failure is indicated.

- 8. Check the load block for signs of overloading:
 - Spread side plates
 - Elongated holes
 - Bent or elongated tie-bolts
 - Cracks
- Check all of the welds for defects and cracks.
- 10. Check the wire rope for wear and broken wires at the point where the wire rope enters the dead-end socket. Check the socket for cracks. Tighten the wire-rope clips located at the dead end of the wire rope.
- **11.** Check that each hook has a latch and that the hook latch operates properly.

WARNING

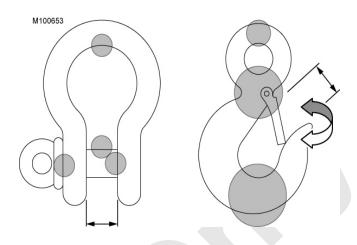
Falling Load Hazard

To prevent the load from dropping due to a hook or shackle failure, do not attempt to repair any cracks in hooks and shackles by welding.

Do not weld on any load-bearing component unless proper welding methods are used (contact the Manitowoc Crane Care Lattice Team for material and welding specifications).

WARNING

Falling Load Hazard


To prevent the load from dropping, make sure that, under slack conditions, the hook latch retains the slings or other rigging in the hook.

The hook latch is not intended as an anti-fouling device. Make sure that the hook latch does not support any part of load.

Make sure that any slings or other rigging are seated in the hook. Rigging must never be in a position to foul the hook latch.

Never attempt to defeat the purpose of the hook latch.

- **12.** Inspect each hook and shackle for damage as shown in Figure 5-22.
- **13.** See the ASME B30-10 Standard for specific hook replacement guidelines. The standards are available as follows:
 - Mail—ASME, 22 Law Drive, Fairfield, New Jersey, 07004-2900
 - Toll free phone—US & Canada 800-843-2763, Mexico 95-800-843-2763, Universal 973-882-1167
 - Fax—973-882-1717 or 973-882-515
 - E-mail— infocentral@asme.org
- **14.** Contact the supplier of your hooks, shackles, blocks, and other rigging for repair instructions.

Item	Description
1	Shackle
2	Check for Wear and Deformation
3	Check for Wear and Straightness
4	Check that Pin is Always Seated
5	Hook
6	Check that Hook is Not Twisted
7	Check for Cracks and Twisting
8	Check for Wear and Cracks

FIGURE 5-22

Yearly Inspection

Check each hook and shackle at least yearly for cracks using a dye penetrant test, MAG particle test, ultrasonic test, or by X-ray.

SECTION 6 SWING

TABLE OF CONTENTS

Manual Release of Swing Brake and Lock	. 6-1
Manual Release Procedure	6-1

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 6 SWING

MANUAL RELEASE OF SWING BRAKE AND LOCK

NOTE: The swing lock is installed on past production cranes only. Current production cranes will have the swing lock removed.

The hydraulic swing brake and hydraulic swing lock must be released when the swing planetary is removed and reinstalled to allow alignment of the gear teeth in the swing shaft with the teeth in the ring gear.

- **3.** Pressurize brake and swing lock to 350 psi (24 bar).
- 4. Remove or install swing planetary.
- **5.** Relieve pressure and remove hand pumps.

CAUTION

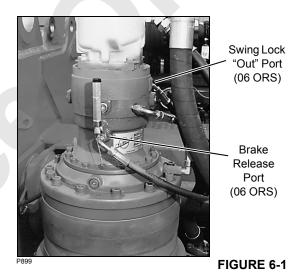
Avoid damage to parts!

Do not exceed 350 psi (24 bar) pressure when releasing swing brake or swing lock.

WARNING

Unexpected Crane Movement!

Crane can swing suddenly when swing brake is released. Before releasing swing brake, secure crane by lowering boom onto blocking at ground level to prevent sudden uncontrolled swinging.


Procedure given in this section is for servicing purposes only. Swing brake and swing lock must be fully operational when operating crane.

Manual Release Procedure

See <u>Figure 6-1</u> for the following procedure.

Hydraulic hand pumps with pressure gauge are needed to manually release the swing brake and swing lock.

- **1.** Disconnect hoses from fitting at brake release port and, if equipped, at swing lock OUT port.
- Attach hand pump to each port brake release and swing lock OUT.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 7 POWER TRAIN

TABLE OF CONTENTS

Battery Maintenance	
Safety Information	
Causes Of Battery Failure	
Overcharging	
Undercharging	
Lack of Water	
Hold-Downs	
Overloads	
Maintenance	
Weekly – Check Electrolyte Level	
Every 2 Months – Test Batteries	
Open-Circuit Voltage Test	
High Resistance Test	
Quarterly	
Charging	
Storage	
Battery Disconnect Switch	
Engine Diagnostics	7-4
General	7-4
On-Board Engine Diagnostics	7-4
Engine Diagnostics — Cummins	7-4
DPF Diagnostics — Tier 4	
Engine Air Cleaner Maintenance	
Tier 3 and Past Production	
Inspection	
Service	
Tier 4 Current Production	
Inspection	
Daily	
Monthly	
Engine Clutch Adjustment	
Operation	
Adjustment	
Engine Throttle Adjustment	
Foot Throttle Controller.	
Assembly	
Calibration	
Engine Speed Calibration	
Engine Cooling System	
General	7-13
Operation	7-13
Coolant Flow	
Maintenance	
Daily Maintenance (Start of Each Shift)	
Semiannual Checks	
Draining Cooling System	
Filling Cooling System	
Supplemental Coolant Additive	
Engine Belt Routing	/-16

Tier 3 Engine	
Tier 4 Engine	. 7-16
Diesel Particulate Filter — Tier 4	. 7-17
General	. 7-17
Regeneration	. 7-17
General	. 7-17
Passive Regeneration	. 7-17
Active Regeneration	
Stationary Regeneration	. 7-17
Maintenance	. 7-18
DPF Removal	. 7-18
DPF Installation	. 7-19
DPF Re-Orientation	7-19

7

SECTION 7 POWER TRAIN

BATTERY MAINTENANCE

Safety Information

WARNING

Battery gases are explosive!

Batteries can explode with great violence and spraying of acid if a spark or flame is brought too near them. The room or compartment in which batteries are stored must be ventilated and away from flames or sparks.

Avoid sparks while charging batteries. Do not disturb connection between batteries until charger is OFF.

Another source of explosion lies in the reverse connection of charging equipment. This hazard is present with all types of chargers, but particularly in the case of high-rate equipment. Carefully check the connections before turning the charger ON.

Improper use of a "booster" battery to start a crane when the normal battery is inadequate presents a definite explosion hazard. To minimize this hazard, the following procedure is suggested:

- **1.** First connect both jumper cables to the battery on the crane to be started. Do not allow ends of cables to touch.
- 2. Then connect the positive cable to the positive terminal of the booster battery.
- **3.** Finally, connect the remaining cable to the frame or block of the starting vehicle. **Never** connect it to the grounded terminal of the starting vehicle.

If electrolyte comes in contact with eyes, skin, or clothing, the area must be immediately flushed with large amounts of water. Seek first aid if discomfort continues.

Causes Of Battery Failure

Overcharging

Overcharging is the number one cause of battery failure, and is most often caused by a malfunctioning voltage regulator.

Excessive heat is the result of overcharging. Overheating causes the plates to warp which can damage separators and cause a short circuit within a cell. This bubbling and gassing of the electrolyte can wash the active material from the plates, reducing the battery's capacity or causing an internal short.

Undercharging

Undercharging can cause a type of sulfate to develop on the plates. The sulfate causes strains in the positive plates which causes plate buckling. Buckled plates can pinch the separators and cause a short circuit. An undercharged battery is not only unable to deliver power, but may freeze (see Table 7-1).

Table 7-1 Battery Freeze Points

State of Charge	Specific Gravity	Freeze Point °C (°F)
100%	1.26	-57 (-70)
75%	1.23	-38 (-36)
50%	1.20	-26 (-15)
25%	1.17	-19 (-2)
DISCHARGED	1.11	-8 (18)
DISCHARGED	1.11	-0 (10)

The sulfate condition can eventually be converted to metallic lead which can short the positive and negative plates. These small shorts can cause low cell voltage when the battery is charged.

Lack of Water

The plates must be completely covered. If the plates are exposed, the high acid concentration will char and disintegrate the separators. The plates cannot take a full charge if not completely covered by electrolyte.

Hold-Downs

Loose hold-downs will allow the battery to vibrate in the holder. This can cause cracks or wear in the container and cause acid to leak. Leaking acid corrodes terminals and cables causing high resistance battery connections. This weakens the power of the battery. Overtightened hold-downs can also distort or crack the container.

Overloads

Avoid prolonged cranking or the addition of extra electric devices which will drain the battery and may cause excessive heat.

Multiple Battery System

Multiple battery systems are connected either in series or in parallel. Always refer to wiring diagram for correct connection.

NOTE: Installing batteries with reversed electrical connections will not only damage batteries but also crane's electrical system, voltage regulator, and/or alternator.

Maintenance

Weekly - Check Electrolyte Level

- Clean the top of the battery before removing the vent caps. Keep foreign material out. Confirm that the plates in each cell are completely covered with electrolyte.
- 2. Distilled water should be used. Drinking water is, however, satisfactory. Water with a high mineral content (well, creek, pond) must not be used.
- Never overfill the cells. Overfilling will cause electrolyte to pump out, and corrosion damage will result.
 - Any spills on painted or metal surfaces must be immediately cleaned and acid neutralized with baking soda or ammonia.
- Look for heavy deposits of black lead like mineral on the bottom of the vent caps. This indicates that active material is being shed (an indication of overcharging).
 - An excessive amount of water consumption also indicates overcharging.
- Sulfuric acid must never be added to a cell unless it is known that acid has been spilled out or otherwise lost consult your battery dealer for instructions.

Every 2 Months - Test Batteries

Before testing a battery determine that the alternator is putting out current, that the current is flowing to the battery, and that the voltage delivered is within acceptable limits.

Hydrometer Test

- 1. The electrolyte level in each cell must be at its proper height to get reliable readings. Confirm that the plates in each cell are completely covered with electrolyte.
- Readings should not be taken immediately after water is added. The solution must be thoroughly mixed by charging.
- 3. Likewise, readings should not be taken after a battery has been discharged at a high rate, such as cranking.
- When reading a hydrometer, hold the barrel vertical with the float freely suspended.
- Draw the electrolyte in and out several times to bring the float temperature to that of the electrolyte.
- **6.** Take the reading across the bottom of the liquid level. Disregard curvature of the liquid.
- Readings must be temperature corrected. Subtract 0.004 from the reading for each 6° below 27°C (80°F). Add 0.004 for each 6° above 27°C (80°F).

NOTE: It is the electrolyte temperature which is important, not air temperature.

8. Temperature corrected hydrometer readings may be explained as shown in <u>Table 7-2</u>.

Table 7-2 Hydrometer Readings

Hydrometer Reading — Specific Gravity.	% Charge	
1.260 – 1.280 =	100%	
1.230 – 1.250 =	75%	
1.200 – 1.220 =	50%	
1.170 – 1.190 =	25%	
1.140 – 1.160 =	Very little useful capacity	
1.110 – 1.130 =	Discharged	

If any two cells show more than 0.050 specific gravity variation, try to recharge the battery. If the variation persists, the battery should be replaced.

NOTE: For more specific hydrometer test information, see the instructions provided with your hydrometer.

Open-Circuit Voltage Test

A sensitive voltmeter (<u>Figure 7-1</u>) can be used to determine a battery's state-of-charge as shown in <u>Table 7-3</u>.

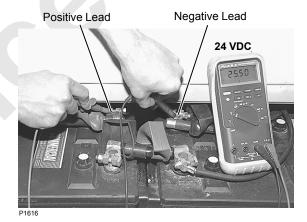


FIGURE 7-1

The open circuit test is not as reliable in determining a battery's condition as the hydrometer test. This test is acceptable for stored batteries, but not ones in use.

This test must not be performed on batteries being charged or delivering power; charging causes an increase in voltage which may persist for an extended period.

Table 7-3 Open Circuit Cell Voltage

% Charge	Specific Gravity	Approximate Open Circuit Cell Voltage
100	1.260	2.10
75	1.230	2.07
50	1.200	2.04

% Charge	Specific Gravity	Approximate Open Circuit Cell Voltage
25	1.170	2.01
Discharged	1.110	1.95

NOTE: Detailed test information is provided by the meter manufacturer.

High Resistance Test

When cranking, a voltage drop of more than 0.2 volts between the starting motor cable and ground can cause hard starting regardless of a battery's condition. The voltage drop can be caused by a poor contact between the cable terminal and ground or between the clamp terminal and the battery post. Poor start-switch contacts and frayed, broken, or corroded cables can also be the cause.

Quarterly

- **1.** Thoroughly clean the batteries and the holder with baking soda.
- **2.** If provided, make sure the drain holes are open in the holder. If water collects in the holder, drill drain holes.
- **3.** Clean the posts and terminals. The posts can be tightly coated with grease to prevent corrosion.
- **4.** Make sure the hold-downs are in good condition; replace faulty parts.
- 5. Replace frayed, broken, or corroded cables.
- Replace the batteries if their containers are cracked or worn to the point they leak.
- **7.** Ensure a good tight contact between the clamp terminals and battery posts.
- **B.** Make sure the hold-downs are tight enough to prevent battery movement but not so tight to cause distortion.

Charging

The battery should be at room temperature when recharging. Before a battery is recharged, it must be thoroughly cleaned. Take care not to allow dirt to enter the cells.

A battery should be recharged in the way it was discharged. If it was discharged over a long period of time, it should be recharged slowly at 6 to 10 amperes for up to 10 hours. A rule-of-thumb value for a slow rate is a current equal to about one-half the number of plates per cell in the battery. A battery with 13 plates per cell, should, therefore be charged at 7 amperes.

If a battery was discharged rapidly (cranking until dead), it can be recharged on a fast charger with an output of up to 40

amperes for a maximum of 2 hours. If the electrolyte temperature reaches 52°C (126°F) or if it gases violently, the charging current must be reduced or halted to avoid battery damage.

For optimum charging results, adhere to the charger manufacturer's instructions.

Storage

When the crane is left idle for prolonged periods, it should be run periodically to charge the batteries.

When storing a battery, make sure it is at least 75% charged to prevent the possibility of freezing.

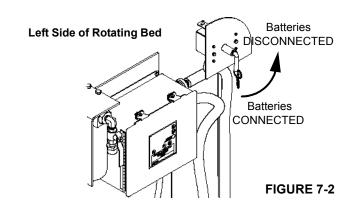
Follow your battery dealer's recommendations.

Battery Disconnect Switch

See Figure 7-2 for the following procedure.

A battery disconnect switch is provided on the left side of rotating bed, near the engine node. Use the switch to disconnect the batteries when servicing the electrical control system. Turn switch handle counter-clockwise to disconnect the batteries for crane maintenance. In the disconnect position the handle can be removed from the switch.

See Section 3 of Crane Operator Manual for operation of the battery disconnect switch.


CAUTION

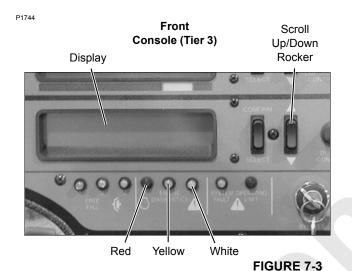
Engine Damage!

To avoid possible engine fault codes and undesirable operation, make sure engine ignition switch has been off five minutes before disconnecting batteries.

Do not rely on this switch to protect crane's electronic systems when welding. Disconnect battery cables at batteries before welding.

Make sure engine ignition switch has been off five minutes before disconnecting batteries.

ENGINE DIAGNOSTICS


General

The Cummins QSX15 Engine has two types of fault codes:

- · Engine electronic fuel system fault codes
- Engine protection system fault codes

All fault codes are either active or inactive. Active engine faults can be viewed on the crane's digital display either with the engine running or with the engine off (run/stop/run switch in RUN position). Inactive faults can only be read with electronic service tool supplied by the engine manufacturer.

The engine diagnostic lights are mounted on the front console in the operator's cab as shown in Figure 7-3.

RED STOP LIGHT

When on, the red stop light indicates the need to **stop engine as soon as safely possible** and correct the fault.

CAUTION

If possible, lower lifted loads to ground and then stop engine as soon as possible when red stop light comes on. Permanent damage can occur if engine is run while red stop light is on. Do not run engine until fault is corrected.

YELLOW WARNING LIGHT

When on, the yellow warning light indicates that engine can be run, but the fault should be corrected as soon as possible.

WHITE MAINTAIN LIGHT

When on, the white maintain light indicates that engine maintenance is required. See engine manufacturer's manual for maintenance instructions.

On-Board Engine Diagnostics

Engine Diagnostics — Cummins

Active engine faults can be viewed on the crane's digital display either with the engine running or with the engine off (run/stop/run switch in RUN position). A laminated list of fault codes is located in the operator's cab.

- Scroll up or down with rocker on right side of digital display until Engine Diagnostics screen appears.
- Corresponding flash code for each active fault will appear next to FLASH CODE as shown in Figure 7-4.

The screen will automatically scroll through each fault at two-second intervals if more than one fault exists.

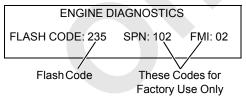


FIGURE 7-4

DPF Diagnostics — Tier 4

See Figure 7-5 for the following procedure.

DPF High Temperature

GLOWS YELLOW to alert crane operator that the exhaust system temperature is higher than normal due to DPF regeneration.

WARNING

High Exhaust Temperatures!

Active DPF Regeneration can occur at low engine idle as well as during crane operation. This may result in high exhaust temperature. Always keep personnel well away from the exhaust to prevent injury and possible death.

DPF Condition

Displays one of three conditions if the Regeneration Inhibit switch is on (reference the Engine Manufacturer's Manual for additional information):

- GLOWS YELLOW when DPF is active and starting to fill.
 Turn off regeneration inhibit switch. No immediate action is required.
- FLASHING when DPF is nearly full. The operator may sense a reduction in power. Turn off regeneration inhibit switch. Perform a manual stationary regeneration of the DPF at earliest convenience.

OFF when DPF is full and Red Engine Stop Light is ON.
The soot level is critically high and past the point of a
manual stationary regeneration. The operator will notice
a significant reduction in engine power. Turn off
regeneration inhibit switch and shut down crane. Do
NOT perform a manual stationary regeneration. The
DPF must be removed from the crane and physically
cleaned and the Red Engine Warning Light can only be
cleared by a Cummins Service Technician, see Engine
Manufacturer's Manual for details.

DPF Regeneration Inhibit On

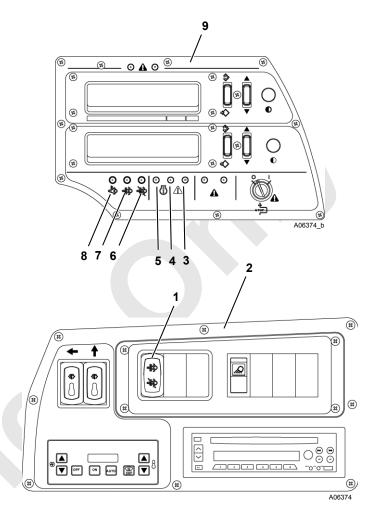
GLOWS YELLOW when active regeneration has been stopped by pressing the Inhibit function (bottom) of the regeneration switch. Excessive use of regeneration inhibit will result in the need to service or replace the DPF.

DPF Regeneration/Inhibit Switch

The DPF switch is a three position switch. Top position is momentary. Center and bottom position are maintained.

CENTER position is for NORMAL engine operation. Regeneration of the DPF will occur automatically.

Press TOP of rocker to START manual stationary regeneration. Release switch back to center position. Cummins ECM will control a DPF regeneration if necessary. It is normal for the DPF High Temperature lamp to illuminate.


Perform a manual stationary regeneration **only** if indicated by the DPF diagnostic in the Tier 4 Engine Diagnostics — Cummins QSX15 Tier 4. (see DPF Condition for details).

NOTE: A guard over the top of the rocker prevents accidental manual regeneration of the DPF.

Press BOTTOM of rocker to INHIBIT active regeneration. The amber LED in the rocker will glow.

Use INHIBIT only for special circumstances where it is desirable to disable active regeneration. Prolonged engine operation with INHIBIT on will cause the DPF to fill with soot. Too much soot could cause the engine to stop. If that occurs it will be necessary to clean the DPF before the engine can be restarted.

See Engine Manufacturer's Manual for additional information regarding stationary regeneration and DPF inhibit operating instructions.

DPF Diagnostics

Item	Description
1	DPF Regeneration/Inhibit Switch
2	Right Hand Console Accessory Panel
3	Engine Maintenance Light — White
4	Engine Warning Light — Amber
5	Engine Stop Light — Red
6	DPF Inhibit On — Amber
7	DPF Regeneration On — Amber
8	DPF High Temperature — Amber
9	Front Console (Tier 4)

FIGURE 7-5

ENGINE AIR CLEANER MAINTENANCE

Tier 3 and Past Production

See Figure 7-6 for the following procedure.

The air cleaner is mounted horizontally and fastened to the engine air intake manifold with rubber elbows and metal tubes. Servicing the engine air cleaner is an important maintenance function:

- A clogged air cleaner filter will prevent adequate air flow to the engine, causing poor starting and increased exhaust emissions.
- An improperly installed or damaged air cleaner can allow dirty air to be drawn directly into the engine.

Either condition can cause engine damage.

Inspection

To maintain engine protection and filter service life, inspect the following areas at regular intervals:

1. Check service indicator daily with engine running.

The indicator gives a visual signal when it is time to replace the air cleaner.

The red flag in the indicator window rises as the air cleaner fills with dirt. **Replace air cleaner when red flag locks in place at top of indicator.**

The red flag remains up after the engine is stopped. After the air cleaner is replaced, push the button *in* on the indicator to reset it.

- Inspect elbows and tubes between air cleaner and engine for cracks or other damage which might allow unfiltered air to enter engine. Replace defective parts.
- Check air cleaner housing for dents or other damage that may allow unfiltered air to enter engine. Replace air cleaner if damaged.
- **4.** Check for loose clamps and tighten if required.
- 5. Check that inlet cap is free of obstructions.
- 6. Check that Evacuator™ Valve is open.

Service

See Figure 7-6 for the following procedure.

CAUTION

Engine Damage!

STOP ENGINE before servicing air cleaner, or unfiltered air will be drawn directly into engine.

Do not attempt to clean and reuse old air cleaner. Discard old air cleaner and install a new one.

1. Release seal carefully:

Unlatch and remove service cover. Make certain latches are folded back against cover so that they don't hinder filter removal/installation. Most latches are spring loaded to fold back when open. The air cleaner has two filters: a primary and a safety. The filters should be removed gently to reduce the amount of dust dislodged. There will be some initial resistance, similar to breaking the seal on a jar. Gently move the end of the primary filter back and forth to break the seal.

2. Avoid dislodging dust from filters:

Gently pull primary filter off outlet tube and out of housing. Avoid knocking filter against housing.

Repeat steps 1 and 2 for safety filter.

3. Clean sealing surfaces in housing:

Use a clean cloth to wipe sealing surfaces clean. Dust on sealing surfaces could hinder an effective seal and cause leakage. Make sure that all contaminant is removed before new filters are installed.

Clean inside of outlet tube:

Carefully wipe inside of outlet tube with a clean cloth. Dirt accidentally transferred to inside of outlet tube will reach engine and cause wear (engine manufacturers say that it takes only a few grams of dirt to destroy an engine). Be careful not to damage sealing area of tube.

5. Check old filters for leak clues:

Visually inspect old filters for any signs of leaks. A streak of dust on clean side of filter is a telltale sign. Remove any cause of leaks before installing new filter.

6. Inspect new filters for damage:

Inspect new filters, paying attention to inside of open end, which is sealing area. **Never** install damaged filters.

7. Install filters by hand:

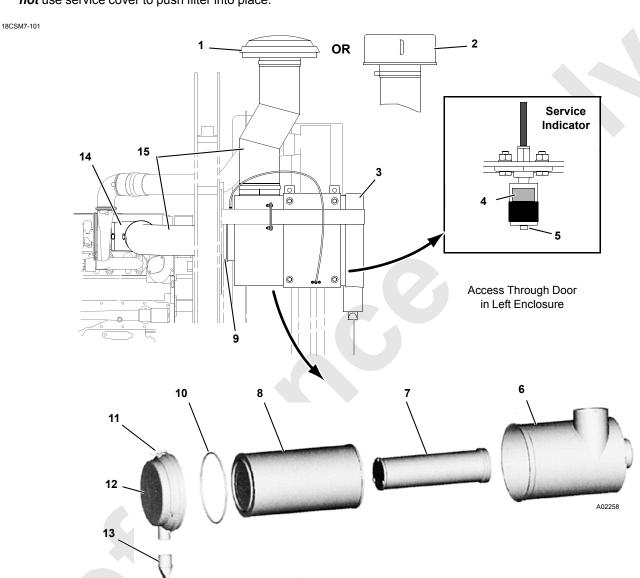
Insert new safety filter carefully and seal it by hand, making certain filter is completely seated in housing.

Repeat this step for primary filter.

8. Install service cover:

Once filter is in place, put service cover back on, making sure the Evacuator™ Valve points down. Re-fasten latches. Cover should go on without extra force.

Never use latches on cover to force filters into air cleaner. It is tempting to assume cover will do the job of sealing the filter – but it will not. Using latches to push filter in could cause damage to housing and will void warranty.


Donaldson RadialSeal™ filters are self-aligning, self-centering, and self-sealing. New filters have a dry lubricant to aid installation. The critical sealing areas will

stretch slightly, adjust themselves, and distribute the sealing pressure evenly. To complete a tight seal, apply pressure by hand at outer rim of filters, not the flexible center. Avoid pushing center of urethane end cap. No cover pressure is required to hold the seal. Again, *do not* use service cover to push filter into place.

9. Check connections for tight fit:

Make sure that all clamps, bolts, and connections in entire air intake system are tight. Check for holes in piping, and repair if needed.

Item	Description	Item	Description
1	Standard Inlet Cap	9	Rubber Reducer with Clamps
2	Pre-Cleaner Inlet Cap	10	Cover Seal
3	Housing	11	Clamp
4	Window	12	Service Cover
5	Reset Button	13	Evacuator™ Valve
6	Housing	14	Rubber Elbow with Clamps
7	Safety Filter	15	Tube
8	Primary Filter		

FIGURE 7-6

Tier 4 Current Production

See Figure 7-7 for the following procedure.

The Tier 4 intake assembly has mounting brackets (4) that are fastened to the engine air cleaner assembly (3) with three rubber elbow reducers (1), clamps (2), and straight adapter tubes connecting it to the eng[ine. Servicing the air cleaner is an important function because:

- Clogged air cleaner filters will prevent adequate air flow to the engine, causing poor starting and increased exhaust emissions.
- An improperly installed or damaged air cleaner can allow dirty air to be drawn directly into the engine.

Either condition can cause engine damage.

Inspection

To maintain engine protection and filter service life, inspect the following areas at regular intervals:

Daily

Check service indicator (6) with engine running. The indicator gives a visual indication when it is time to replace the filters.

- A yellow flag in the indicator window extends as the filters become plugged. Replace filters when the yellow indicator reaches the red zone at the end of the indicator.
- The yellow flag remains locked in place after the engine is stopped. When the filters are replaced, push button (7) in to reset the indicator.

Monthly

- Inspect rubber reducers (1) between air cleaner and engine for cracks or other damage which might allow unfiltered air to enter the engine. Replace worn or damaged parts.
- 2. Check air cleaner assembly housing (3) for dents or other damage that may allow unfiltered air to enter engine. Replace housing if damaged.
- 3. Check for loose clamps (2). Tighten if necessary.
- **4.** Inspect engine intake pre cleaner (5) for obstructions or damage. Clean as required.

CAUTION

Engine Damage!

STOP ENGINE before servicing air cleaner or unfiltered air will be drawn directly into engine.

Before servicing clean fittings, mounting hardware and area around component(s) to be removed.

Never operate engine without air cleaner.

Replace secondary filter as quickly as possible to avoid engine ingestion of contaminants.

Do not attempt to clean and re use old filters. Discard old filters and install new filters. Cleaning filter elements by impact or compressed air voids the warranty and can degrade or damage the filter media, leading to malfunction.

Service

Service the air cleaner and its primary and secondary filter elements per the intervals specified by the engine manufacturer and per the engine manufacturer's instructions. An illustration of these instructions is located on the air filter cover (see Figure 7-7).

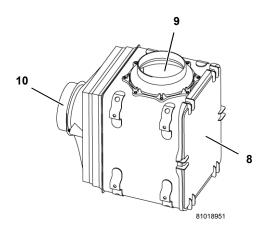
Replacement of the primary filter is indicated only when the red flag locks in place at the top of the service indicator.

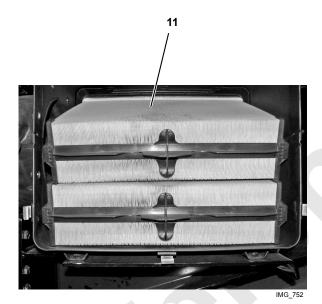
NOTE: The recommended service interval for replacing the secondary element is every **3rd** time the primary element is replaced

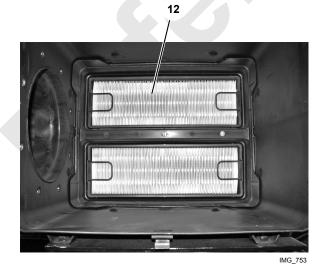
CAUTION

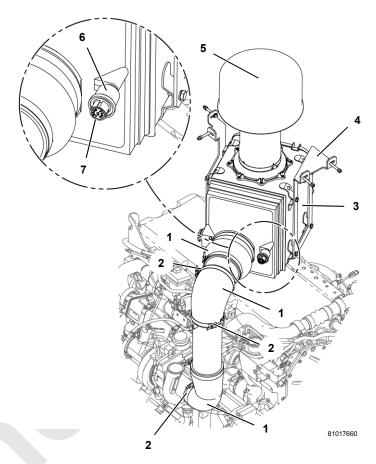
Engine Damage!

STOP ENGINE before servicing air cleaner, or unfiltered air will be drawn directly into engine.


Do not attempt to clean and reuse old filter. Discard old filter and install a new one.


 Wipe any accumulated dirt, grease, or other foreign material from the outside surface of the air cleaner assembly to prevent contamination when opening the air cleaner or integral pre-cleaner assemblies.


Do not allow foreign matter to enter housing, tubing or air inlet hole to the engine.


Refer to the engine manufacturer's instructions to open, service and close the air cleaner or integral pre-cleaner assemblies.

Item Description

- 1 Rubber Reducer
- 2 Clamp (6)
- 3 Air Cleaner Assembly
- 4 Mounting Bracket
- 5 Pre Cleaner
- 6 Service Indicator
- 7 Reset Button
- 8 Filter Access Cover
- 9 Air Cleaner Assembly Inlet
- 10 Air Cleaner Assembly Outlet
- 11 Primary Filter
- 12 Secondary Filter

FIGURE 7-7

ENGINE CLUTCH ADJUSTMENT

See Figure 7-8 for the following procedure.

A disc-type manually operated clutch is mounted between the engine and the pump drive on this crane. The clutch allows the pump drive to be disconnected from the engine, thereby reducing engine load and making start-up easier in cold weather. The clutch can be engaged or disengaged while the engine is running or off.

CAUTION

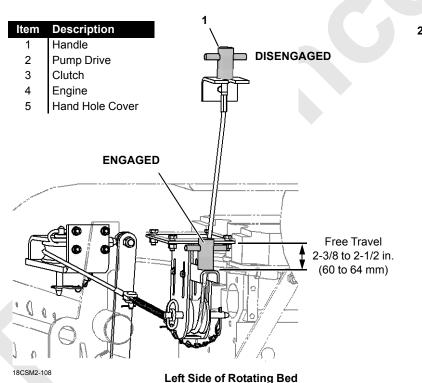
Avoid Clutch Damage!

Observe the following precautions for the engine clutch:

- Decrease engine speed to idle before engaging or disengaging clutch.
- Do not run engine longer than twenty minutes with clutch disengaged.
- Disengage and engage clutch several times monthly with engine running.

Operation

- **1.** Grease clutch monthly. See Lubrication Guide in Section 9 of this manual.
- 2. At least once each month, disengage and engage the clutch several times with engine running. This practice will clean disc surfaces and prevent discs from seizing.
- When disengaging clutch, check free travel at lower bracket. Free travel should be 2-3/8 – 2-1/2 in (60 – 64 mm). Readjust the clutch when free travel decreases to 1-3/8 in (35 mm).


DANGER

Moving Machinery Hazard!

Parts inside clutch rotate when engine is running. STOP ENGINE before adjusting clutch.

Adjustment

The clutch is adjusted internally through the hand hole on top of clutch housing. See the manufacturer's manual for adjustment instructions.

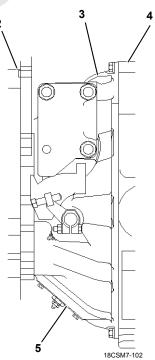


FIGURE 7-8

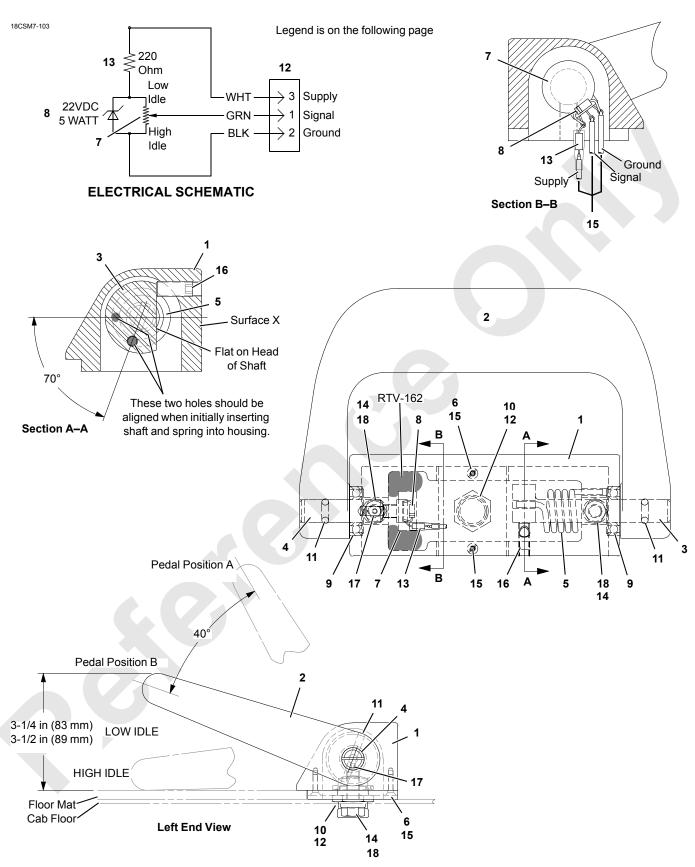


FIGURE 7-9

ENGINE THROTTLE ADJUSTMENT

The engine throttle assembly consist of an electronic hand throttle controller in the left console and an electronic foot throttle controller on the cab floor. There is no mechanical linkage between the controllers.

Electronic signals from the throttle controllers are transmitted to the crane's programmable controller, and the programmable controller increases and decreases engine speed accordingly.

FOOT THROTTLE CONTROLLER

See <u>Figure 7-9</u> for the following procedure.

The foot throttle controller was properly assembled and calibrated at initial installation and should not require further attention.

Assemble and calibrate the foot throttle controller as follows if it is repaired or replaced.

Assembly

- To assemble shaft (3) and torsion spring (5) into housing (1), first assemble spring onto shaft by inserting lug on one end of spring into hole in head of shaft.
- **2.** Insert shaft (3) into cavity in bottom of housing (1), through bearing (9), and into pedal (2).
 - Lug on outboard end of spring (5) must engage hole in housing (1) (Section A-A).
- **3.** Insert shaft (4) into cavity in bottom of housing (1), through bearing (9), and into pedal (2).
- **4.** Rotate pedal (2) as needed and install roll pins (14) through holes in pedal and shafts (Pedal Position "A").
- **5.** Install setscrew (16). Do not insert deep enough to contact head on shaft (3).

6. Rotate pedal approximately 40° to position "B" (low idle). At this time flat on head of shaft (3) should be parallel with surface X on housing. Finish turning in setscrew (14) until it contacts flat on head of shaft (Section A-A).

Calibration

Supply voltage to be 25.0 to 26.0 VDC.

- **1.** Turn potentiometer (7) shaft fully CCW as viewed from shaft end (zero volts out).
- 2. With pedal (3) in Position B, insert potentiometer (7) into cavity in bottom of housing (1) as shown in View B-B. Insert potentiometer shaft into end of shaft (4) and tighten setscrew (22).
- 3. Rotate pedal to high idle position, hold in place using setscrew (16), and rotate potentiometer housing to obtain an output of 0.90 to 1.00 VDC.
- **4.** Apply silicone sealant RTV-162 (MCC #622201) between housing (1) and potentiometer (7). Do not get sealant on shaft (4). Allow sealant to cure one to two hours before proceeding to next step.
- After sealant has cured, check output for 0.90 to 1.00 VDC in high idle position.
- **6.** Remove setscrew (16), apply LOCTITE #242 (MCC #622293) to threads, and adjust setscrew to obtain a low idle position output reading of 2.90 to 3.00 VDC.

ENGINE SPEED CALIBRATION

Engine speed is calibrated automatically by the crane's programmable controller:

- HIGH IDLE = 1,800 rpm
- LOW IDLE = 1,050 rpm

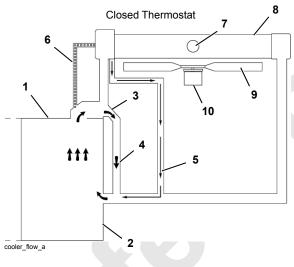
Component Identification for Figure 7-9

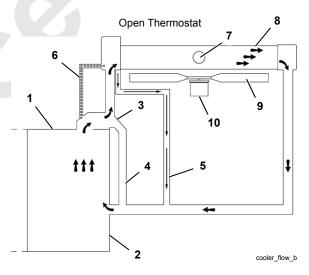
Item	Qty.	Description	Item	Qty.	Description
1	1	Foot Pedal Housing	10	1	Conduit Nut (1/2 in.)
2	1	Foot Pedal	11	2	Roll Pin (3/16 in. Diameter x 1-1/2 in. Long)
3	1	Foot Pedal Shaft (right)	12	1	3-Pole Male Receptacle
4	1	Foot Pedal Shaft (left)	13	1	Resistor (220 Ohm, 1Watt)
5	1	Torsion Spring	14	2	Hex Head Cap Screw (3/8 in16UNC x 3/4 in. Long)
6	1	Receptacle Mounting Bracket	15	2	Flat Head Brass Screw (#6-32UNC x 1/2 in. Long)
7	1	Potentiometer	16	1	Allen Head Cup Set Screw (5/6 in18UNC x 3/4 in. Long)
8	1	Zener Diode (22 VDC, 5 Watt)	17	1	Allen Head Cup Set Screw (#6-32UNC x 3/16 in. Long)
9	2	Roller Bearing	18	2	Lockwasher (3/8 in.)

ENGINE COOLING SYSTEM

General

The cooling system consists of a vertically mounted radiator in front of the engine with a hydraulically driven blower-type fan.


Operation


Coolant Flow

The cooling system is of the de-aerated type, which continually removes air from the system, as follows:

- A small percentage of total coolant flow is circulated through a vent line to the radiator.
- Since coolant circulation is very slow in the radiator, air separates from the coolant.
- Air collects at the top of the radiator. When pressure rises to 15 psi (1,03 bar), the relief in the fill cap opens to exhaust air through overflow line.
- De-aerated coolant returns to the system through a make-up line.

Item	Description	Item	Description
1	Engine	6	Vent Line
2	Water Pump Housing	7	Fill Cap
3	Thermostat Housing	8	Cooler Assembly
4	Bypass Line	9	Fan
5	Make up Line	10	Motor



FIGURE 7-10

Maintenance

See Figure 7-11 for the following procedure.

Burn Hazard!

Avoid personal injury from heated coolant spray or steam — do not remove radiator cap from hot engine. Stop engine and wait until coolant temperature is below 120°F (50°C). Then:

- Place a protective covering over fill cap.
- Slowly turn fill cap counterclockwise until it stops at safety detent.
- Wait until pressure (indicated by hissing sound) is completely relieved.
- Depress fill cap and turn counterclockwise to remove.

CAUTION!

Overheating Hazard!

Avoid engine damage from overheating — do not allow coolant level to go below low level on gauge.

Daily Maintenance (Start of Each Shift)

NOTE: Check coolant level when cold.

- 1. Coolant should be at full level of cold gauge.
- 2. Fill cooling system as required with coolant.

See engine manufacturer's manual for antifreeze and coolant additive recommendations.

Look for coolant leaks while engine is running. Correct if found.

Semiannual Checks

- Inspect fill cap and thermostat for proper operation and replace worn parts:
 - Fill cap relieves at 15 psi (1,03 bar).
 - Thermostat closes at 180°F (82°C) and opens fully at 200°F (93°C).
- 2. Inspect water pump belts for wear and proper adjustment (see engine manufacturer's manual).
- Inspect cooling system hoses for deterioration and other defects. Replace as necessary.
- Tighten hose clamps.

- 5. Clean all dirt and other debris from outside of radiator.
- **6.** Check that overflow line on tank is open.

Draining Cooling System

Drain radiator system, as follows:

- 1. Stop engine.
- 2. Remove the cooler assembly fill cap.
- Open drain valve and drain coolant into a suitable container.
- Close the drain valve once the system is completely drained.

Filling Cooling System

See the engine manufacturer's manual for antifreeze and coolant additive recommendations. Add coolant to FULL (COLD) LEVEL as determined on checks per the schedule in the engine owner's manual.

 Fill cooling system through cooler assembly fill cap to FULL (COLD) LEVEL mark on sight gauge. Coolant system capacity is approximately 21 gallons (79,5 liters).

CAUTION!

Engine Damage!

The required coolant level must be maintained to prevent engine damage.

Do not remove the deaeration tank fill cap from a hot engine. Allow the engine to cool below 50°C (120°F) before adding coolant.

Do not add cold coolant to a hot engine. Engine castings can be damaged. Allow the engine to cool below 50°C (120°F) before adding coolant.

Coolant is toxic. Do not ingest. If not reused, dispose of in accordance with all local and other applicable environmental regulations.

- Look for coolant leaks while engine is running. Correct if found.
- Stop engine, wait until engine is cool, and refill cooling system to FULL (COLD) level mark.

Supplemental Coolant Additive

Supplemental Coolant Additive must be added to the cooling system to prevent liner pitting and for scaling protection. Check SCA concentration according to the schedule in the engine manufacturer's operator manual and per warnings, cautions and instructions in the engine manufacturer's service manual.

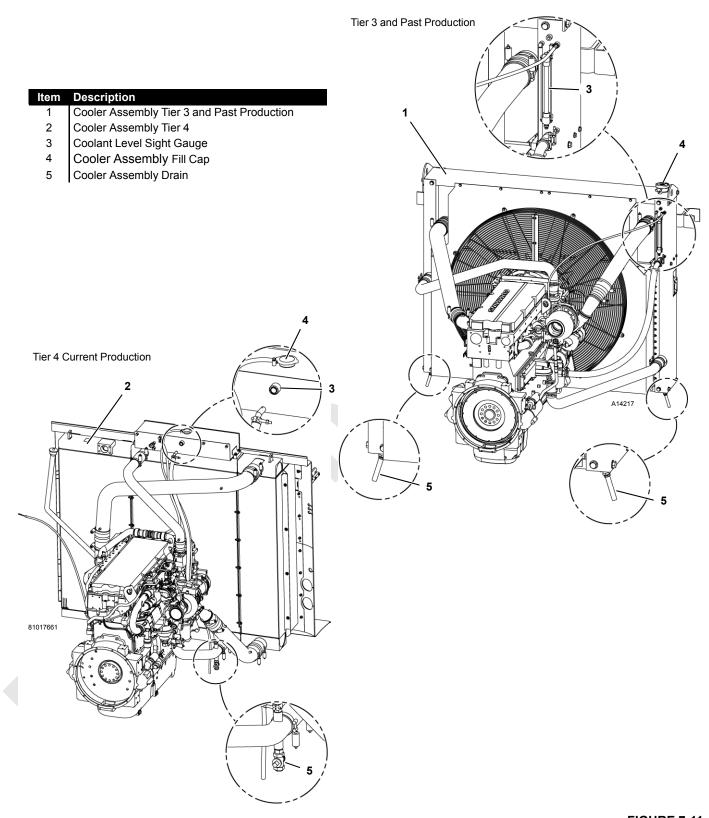
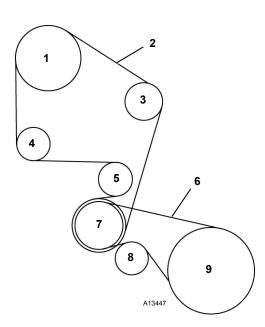
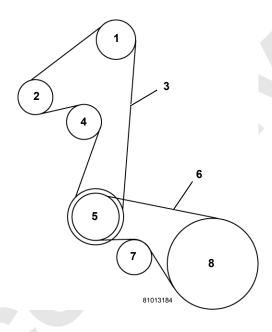



FIGURE 7-11

ENGINE BELT ROUTING

Tier 3 Engine


Engine belt routing for the Tier 3 engine is shown in Figure 7-12 to help service personnel when installing a new fan belt.

ltem	Description
1	Water Pump
2	Belt #1
3	Tension Pulley
4	Alternator
5	Tension Pulley
6	Belt #2
7	Pulley
8	Tension Pulley
9	Crankshaft Flywheel

Tier 4 Engine

Engine belt routing for the Tier 4 engine is shown in Figure 7-13 to help service personnel with installing a new fan belt.

Item	Description
1	Water Pump
2	Alternator
3	Belt #1
4	Tension Pulley
5	Pulley
6	Belt #2
7	Tension Pulley
8	Crankshaft Flywheel

FIGURE 7-13

FIGURE 7-12

DIESEL PARTICULATE FILTER — TIER 4

General

The Diesel Particulate Filter (DPF) — located in the engine enclosure — captures soot and ash from the engine exhaust.

- Soot is partially burned fuel particles that occur during normal operation (black smoke).
- Ash is partially burned engine oil particles that occur during normal operation.

Over time, both soot and ash are collected in the DPF and must be removed.

- Soot is removed by a process called **regeneration**.
- Ash is removed by manually cleaning the DPF at specified intervals (see Engine Manufacturer's Manual for detailed instructions).

Regeneration

General

Regeneration is the process of converting the soot collected in the DPF into carbon dioxide. Regeneration requires heat to occur. Two types of regeneration are used: passive and active.

Passive Regeneration

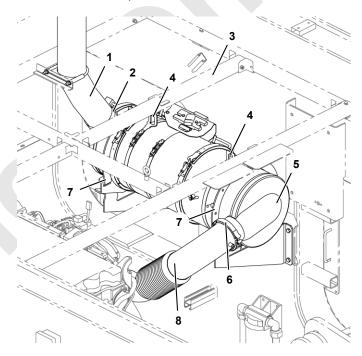
Passive regeneration occurs when exhaust temperatures are naturally high enough to oxidize the soot faster than it is collected in the DPF.

The process typically occurs when the crane is operated at high speeds and/or under heavy loads.

The operator will not know when passive regeneration is occurring.

Active Regeneration

Active regeneration occurs when exhaust temperatures are NOT naturally high enough to oxidize the soot faster than it is collected in the DPF. If this happens, the engine's controller will initiate the process (see Engine Manufacturer's Manual for detailed instructions).


The process occurs more frequently in cranes operated at low speed, light or no load, or stop and go cycles.

Active regeneration will be transparent to the operator, except that he/she may notice an increase in turbocharger noise and an increase in exhaust temperature (high exhaust temperature condition light comes on).

NOTE: Use the INHIBIT switch in the operator's cab only for special circumstances where it is desirable to disable active regeneration. Prolonged engine operation with INHIBIT on will cause the DPF to fill with soot. Too much soot could cause the engine to stop. If that occurs it will be necessary to clean the DPF before the engine can be restarted.

Stationary Regeneration

Stationary regeneration is a form of active regeneration that is initiated by the operator when the crane is parked. The DPF ON light will flash to alert the operator if stationary regeneration is required (see Section 3 of the Crane Operator Manual and the Engine Manufacturer's Manual for detailed instructions).

ltem	Description
1	Exhaust Outlet Tube
2	Outlet Tube V-Band Clamp and Gasket
3	Engine Enclosure Mounting Bracket
4	DPF Lifting Bracket
5	DPF Exhaust Inlet
6	Inlet Tube V-Band Clamp and Gasket
7	DPF Mounting Strap
8	Inlet Tube

FIGURE 7-14

Maintenance

Accumulated ash must be periodically cleaned from the DPF center section. A build-up of ash can result in cold spots and compact the ash within the DPF. This reduces the life of the filter, can damage it, and may increase the time required for regeneration.

In the United States, the Environmental Protection Agency requires that cleaning of the DPF be done at a minimum service interval of 4,500 operating hours, (roughly every two years of one-shift operation). This cleaning requires special tools using equipment specifically made for this purpose. The DPF cannot be cleaned using conventional methods. For this reason, it is recommended that the DPF be sent to the manufacturer for cleaning, or exchanged for a clean DPF if operation of the crane is critical. The DPF must be removed, sent for cleaning, then the cleaned DPF or a replacement installed.

DPF Removal

See Figure 7-14 for the following procedure:

For inspection and/or cleaning, the DPF must be removed. It may be re-usable.

NOTE: The DPF must be removed *and replaced* if engine Fault Code 1981 or 1922 has been noted and the DPF is contaminated with coolant.

DANGER

Electrical Shock Hazard!

Ensure that the battery cables are disconnected from the batteries before loosening any electrical connections.

WARNING!

Explosion Hazard!

Batteries can explode and emit explosive gas. To reduce the chance of injury, always ventilate the area before servicing the batteries. Always remove the negative battery cable first and attach the negative cable last.

Burn and Inhalation Hazards!

Temperature of exhaust and exhaust components for Tier 4 engines can be higher than other engines.

To prevent death or serious injury:

 Allow engine and diesel particulate filter to cool before performing maintenance.

CAUTION

Engine Damage!

To avoid possible engine fault codes and undesirable operation, make sure engine ignition switch has been off five minutes before disconnecting batteries.

Do not rely on this switch to protect crane's electronic systems when welding. Disconnect battery cables at batteries before welding.

- Disconnect the crane's batteries by disconnecting the negative battery cable first and the positive battery cable last or turn the battery disconnect to the "Disconnect" position and remove the key.
- **2.** Removed engine enclosure panels and bracing (3) as needed for clearance to DPF.
- Disconnect the electrical wiring to the DPF. Remove wiring harness and P-clamp mounts on the DPF and lay to the side.
- Loosen (but do not remove) V-band clamp and gasket (6) from the inlet side of the DPF. Slide clamp and gasket onto inlet tube.
- Loosen screws, locknuts, and washers securing inlet tube support bracket or remove U-bolt guillotine clamp to free inlet tube assembly.
- Disconnect inlet tube assembly (8) from DPF.
- 7. Loosen (but do not remove) V-band clamp and gasket (2) from the outlet side and slide onto outlet tube.
- **8.** Loosen screws, locknuts, and washers securing outlet tube support bracket or remove U-bolt guillotine clamp to free outlet tube assembly.
- 9. Disconnect outlet tube assembly (1) from DPF.

10. Mark the direction of exhaust flow, from inlet to outlet, on the outside of the DPF. This will help if the DPF will be cleaned and re-installed.

WARNING!

Personal Injury Hazard!

The Diesel Particulate Filter assembly weighs more than 50 lb (23 kg). To prevent serious personal injury, use assistance or appropriate lifting equipment when lifting or removing.

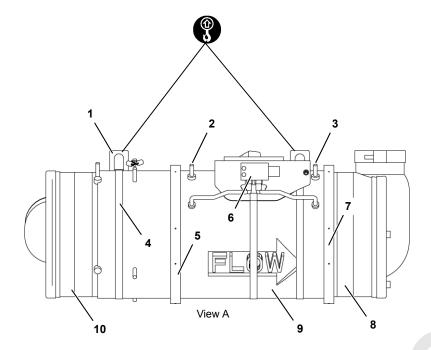
CAUTION!

Equipment Damage!

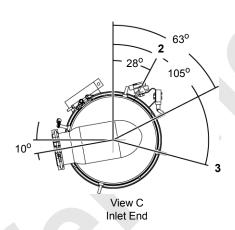
The oxidation catalyst elements of the diesel particulate filter are made of brittle material. Do not drop or strike the side of the DPF as damage to these elements can result.

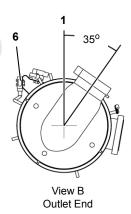
- **11.** Attach hoist chains to lifting hooks (4) on the DPF and lift just enough to remove slack in the chain.
- **12.** Remove hex cap screws and locknuts on each DPF mounting strap (7) and remove straps from DPF mounting bracket.
- **13.** Using hoist, lift the DPF out of the mounting brackets (View A, Figure 7-15).

DPF Installation


- **1.** Using hoist, lift the DPF into the mounting brackets (View A, Figure 7-15).
- **2.** Perform DPF re-orientation procedure if required following cleaning or replacement of the center section.
- 3. Reverse DPF removal procedure for installation.

DPF Re-Orientation


See Figure 7-15 for the following procedure.


NOTE: It will only be necessary to re-orientate the DPF prior to installation after the center section has been removed for cleaning.

- Prep DPF center section by removing any electrical wiring and P-clamp mounts as necessary and noting location of P-clamp mounts for re-installation. Store electrical wiring clear of DPF.
- Loosen each V-Band clamp connecting the inlet section and the outlet section to the filter center section until each section can be freely rotated. Do not fully remove the clamp or gasket.
- 3. Rotate the inlet and outlet section to orientation shown in View B and C, Figure 7-15.
- 4. Tighten each V-Band clamp to 20 Nm (14.48 ft-lb).
- Gently tap the circumference of each clamp with a rubber mallet to ensure proper seating of the V-Band. Re-torque to 20 Nm (14.48 ft-lb).
- **6.** Loosen both band clamps retaining the lifting hooks on the inlet and outlet sections until the lifting hooks can be freely rotated.
- 7. Rotate each lifting hook back to vertical position. Ensure band clamp hardware is rotated 35° from the hook. Adjust hook orientation to ensure sensor harness will not be damaged while lifting.
- **8.** Tighten the band clamp for each lifting hook to 7,3 Nm (64.6 in-lb).
- Re-install DPF electrical wiring and P-clamps as necessary. Tighten P-clamps to 7,3 Nm (64.6 in-lb). Wires installed in P-clamps must not be within 25 mm of the DPF body. Avoid sharp bends and excessive tension in sensor wires.

Item	Description
1	Lifting Hook
2	Temperature Sensor 1
3	Temperature Sensor 2
4	Lifting Hook Band
5	Inlet V-Band Clamp
6	Pressure Sensor
7	Outlet V-Band Clamp
8	DPF Outlet Section
9	DPF Center Section
10	DPF Inlet Section

FIGURE 7-15

SECTION 8 UNDER CARRIAGE

TABLE OF CONTENTS

Turntable Bearing Bolt Torque	8-1
Torque Requirements	8-1
Lubrication	8-1
Torque Values	8-1
Torque Sequence	8-1
Torque Intervals	8-1
Bolt Replacement	8-1
Crawler Adjustment	8-3
Maintenance	
Tread Slack Adjustment	8-3
Adjustment Guideline	
Adjustment Procedure	8-4
Hydraulic Hand Pump	8-5
Assembly	8-5
Maintenance	
Air Removal	8-5
Operation	

THIS PAGE INTENTIONALLY LEFT BLANK

8

SECTION 8 UNDER CARRIAGE

TURNTABLE BEARING BOLT TORQUE

Torque Requirements

DANGER

Crushing Injury Hazard!

Two people are required to torque turntable bearing bolts: an operator to operate swing control and a mechanic to torque bolts.

Mechanic must go inside carbody to torque inner turntable bearing bolts.

- Maintain constant communication between operator and mechanic while mechanic is inside carbody.
- Operator, do not swing upperworks until instructed to do so by mechanic.

Mechanic, stay well clear of moving parts while upper is being swung to position bolts.

WARNING

Bolt Failure!

Loose or improperly torqued bolts can cause bolts or turntable bearing to fail, possibly allowing upperworks to break away from carbody.

Lubrication

Before installing the turntable bearing bolts, lubricate the threads of each bolt and both sides of each washer with

"Never-Seez" (MCC No. 361010) or an equivalent antiseizing lubricant.

Torque Values

Torque each turntable bearing bolt to 6,600 ft-lb (8 948 Nm).

When new bolts are installed, torque the bolts in two steps: first to 2,200 ft-lb (2 983 Nm) and then to 6,600 ft-lb (8 948 Nm).

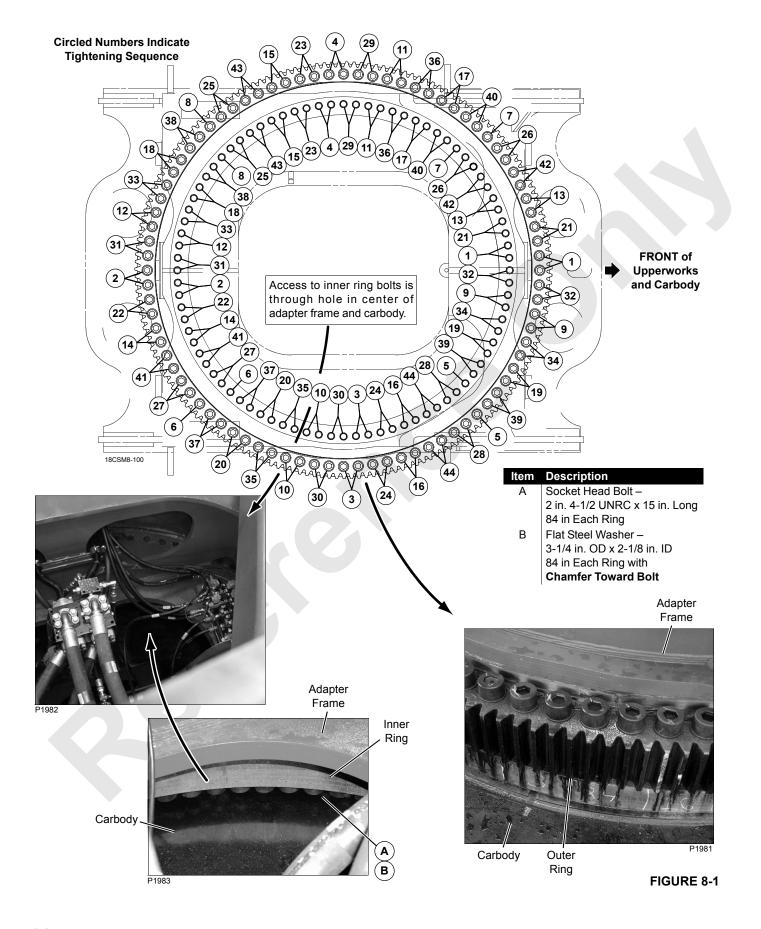
Torque Sequence

Torque the bolts (two at a time in most cases) in the numbered sequence given in Figure 8-1 (one ring at a time).

Torque Intervals

Initial operation: torque all bolts to the specified value after the first 50 hours of operation.

Yearly or every 2,000 hours of operation (whichever comes first): torque all bolts to the specified value.


Bolt Replacement

NOTE: Always replace the washer when replacing a bolt.

If at the yearly inspection interval, one or more bolts are found to be torqued to less than 5,280 ft-lb (7 159 Nm), replace each loose bolt. Also replace the bolt and washer on each side of each loose bolt.

If at the yearly inspection interval 17 or more bolts in either ring are found to be torqued to less than 5,280 ft-lb (7 159 Nm), replace all of the bolts and washers for the corresponding ring.

Replace all bolts and washers each time a new turntable bearing is installed.

CRAWLER ADJUSTMENT

Maintenance

Crawler wear cannot be eliminated, but the rate of wear can be reduced through regular preventive maintenance, as follows:

- Lubricate crawlers as instructed in Lubrication Guide.
- Keep crawlers clean and avoid dirt build-up when cutting.
- Keep all mounting bolts tight (see Parts Manual for applicable torque values).
- Keep treads properly adjusted.
- Inspect crawler gear cases, crawler frames, rollers, and treads on a regular basis.

Look for oil leaks, excessive wear, cracks, and other damage. Broken or cracked parts can indicate that the treads are adjusted too tight.

Repair or replace damaged parts immediately to prevent further damage.

Tread Slack Adjustment

Adjustment Guideline

Check tread slack at the tumbler end of each crawler. Maintain equal tread slack at both crawlers.

- 1. Travel forward or reverse on a firm level surface so all tread slack is in top of treads at tumbler end of crawlers as shown in Figure 8-2.
- Place straight edge on tread as shown in <u>Figure 8-2</u>. Gap between straight edge and top of tread at lowest point should be 1-1/2 in (38 mm) (tight limit) to 3 in (76 mm) (loose limit).
- 3. Adjust tread slack if gap exceeds either limit.
- **4.** Adjust treads tighter when operating on firm ground and looser when operating on soft ground (mud or sand).

CAUTION

Pin Damage!

Do not adjust treads too tight. Tread pins will wear rapidly and may break. Dirt build-up will tighten treads even more, increasing possibility of damage.

More torque is required to drive tight treads, which results in faster wear and more fuel consumption.

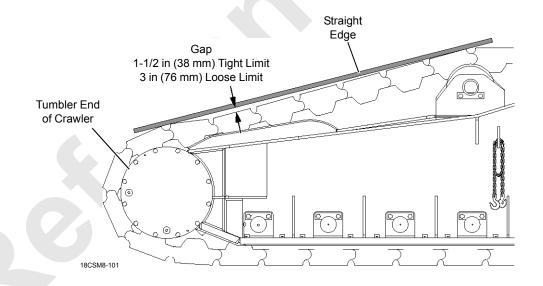


FIGURE 8-2

Adjustment Procedure

Adjust tread slack at roller end of each crawler (Figure 8-3).

- 1. Thoroughly clean crawler to be adjusted.
- 2. Loosen bolt on each side of crawler roller.
- 3. Remove cover from both sides of crawler frame.

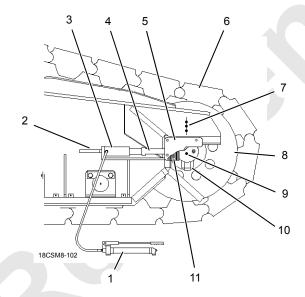
CAUTION

Cylinder Damage!

Two jacking cylinders (one on each side of crawler frame) are required to prevent damage to single jacking cylinder.

- **4.** Place jacking cylinders on supports on both sides of crawler frame.
- Jack against rod an equal amount on both sides of crawler frame.
- **6.** Add or remove an equal thickness of shims on both sides of crawler frame.
- 7. Remove jacking cylinders.

- 8. Travel crane forward or reverse to tighten shims.
- **9.** Check that dimension from center punch (A) in shaft to center punch line (B) in crawler frame is same on both sides of crawler to within 1/8 in (3 mm).


CAUTION

Part Wear!

Crawler roller and tumbler must be square with crawler frame within 1/8 in (3 mm). Otherwise, parts will wear rapidly.

- **10.** Check for proper adjustment (see Adjustment Guideline) and readjust as required (steps 4 through 9).
- **11.** Tighten nuts on bolts at crawler roller to 2,000 ft-lb (2 710 Nm) lubricated with Never-Seez or an equivalent oil and graphite mixture.
- 12. Install cover on both sides of crawler frame.

NOTE: The extreme limit of tread adjustment occurs when the bolts are tight against the front end of the slots in the crawler frame. One crawler tread can be removed when this limit is reached.

ltem	Description
1	Hand Pump
2	Support
3	Jacking Cylinder
4	Rod
5	Cover
6	Tread
7	Center Punch Line B
8	Crawler Roller
9	Center Punch A
10	Bolts
11	Shims
	0.134 in (3 mm) and
	0.250 in (6 mm) Thick

FIGURE 8-3

HYDRAULIC HAND PUMP

See Figure 8-4 for the following procedures.

WARNING

Prevent Possible Death or Serious Injury to Maintenance Personnel

Manitowoc has provided hand pump and cylinder for crawler adjustment only. Any other use is neither intended nor approved.

Wear safety glasses and other personal protective gear when operating hand pump.

Do not exceed maximum pressure rating of components (pump, cylinder, hose) – 10,000 psi (700 bar). Higher pressure can cause components to explode.

Do not set pump relief valve higher than 10,000 psi (700 bar). Higher pressure can cause components to explode.

Pump is not vented. It can explode if subjected to high pressure. Do not attempt to return more oil to pump than it is capable of holding. Do not overfill pump.

In some cases, pump handle can "kickback." Always keep your body to side of pump, away from line of handle force.

Do not add extensions to handle. Extensions can cause unstable operation.

Assembly

- 1. Connect hose from pump outlet port to cylinder inlet.
- **2.** Use 1-1/2 wraps of a high-grade thread sealant on fittings (for example, Teflon tape).

Do not apply sealant to first complete thread to ensure tape does not shed into hydraulic system and cause malfunctioning or damage.

3. Do not over tighten connections. Connections only need to be snug and leak free. Over-tightening can cause premature thread failure and may cause fittings or castings to split at lower than their rated pressures.

Maintenance

- 1. Keep unit clean and stored in a safe place where it cannot be damaged.
- 2. Keep oil in pump at proper level. Check level as follows:
 - a. Open valve and fully retract cylinder rod to return all oil to pump. Cylinder must be fully retracted or system will contain too much oil.

- **b.** For Simplex pump:
 - Place pump in horizontal position on a flat surface.
 - Using a screw driver, remove vent/fill cap.
 - Add hydraulic oil until reservoir is 2/3 full. Do not overfill.
 - Securely reinstall vent/fill cap.
- c. For Enerpac pump:
 - Place pump in vertical position with hose end down.
 - Using a screw driver, remove vent/fill cap.
 - Add hydraulic oil until it is at mark on dipstick.
 Do not overfill.
 - Securely reinstall vent/fill cap.
- **d.** Test operation and remove air from system, if required. Recheck level after removing air.

Air Removal

- 1. Close valve finger tight only.
- 2. Position pump higher than cylinder and position cylinder so rod is down.
- 3. Operate pump to fully extend cylinder rod.
- **4.** Open valve and retract cylinder rod to force oil and trapped air back into pump.
- **5.** Repeat steps until cylinder operates smoothly. *Erratic operation indicates air in system.*

Operation

- 1. Before using pump:
 - a. Check that all fittings are tight and leak free.
 - b. Check oil level.
- 2. To pressurize cylinder and extend rod, close valve by turning clockwise until finger tight only. Then pump handle up and down.

Pressure will be maintained until valve is opened.

To reduce handle effort at high pressure, use short strokes. Maximum leverage is obtained in last five degrees of stroke.

- **3.** To de-pressurize cylinder, push handle down fully and open valve by turning counterclockwise.
- **4.** Pump can be operated in any position from horizontal to vertical as long as **hose end of pump is down**.

S135 S137 S138

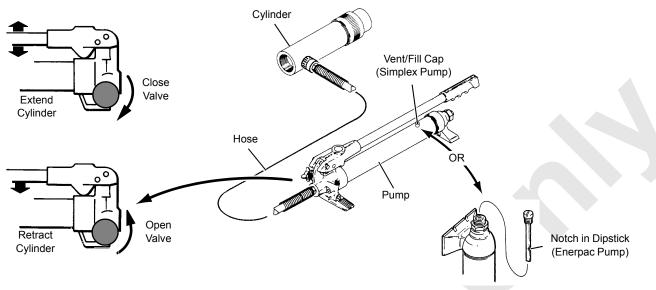


FIGURE 8-4

SECTION 9 LUBRICATION

TΔ	RI	F (OF	ററ	NT	FN	TS
1/7		_ `	9 1	\smile			

Lubrication	
Librication	•
	\mathbf{u}

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 9 LUBRICATION

LUBRICATION

See F2104 at the end of this section.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 10 TROUBLESHOOTING

TABLE OF CONTENTS

	shooting	
Safety Summary	1	10-1
General Trouble	shooting	10-1
Troubleshooting	Charts	10-2
Troubleshooting	Charts	10-3
Problem 1	Engine will not turn over to start	10-3
Problem 2	Engine turns over, but will not start	10-4
Problem 3	Engine runs, but no hydraulic operation	10-5
Problem 4	Engine runs, but battery is not charging	10-6
Problem 5	An engine fault alert is enable during engine operation	10-7
Problem 6	Crawler travels at slow speed	
Problem 7	Crawlers will not travel in either direction (one or both tracks)	10-9
Problem 8	No load drum operation (drum 1, 2 or 3)	10-10
Problem 9	Load drum (1, 2 or 3) will not raise load, but will lower load	10-11
Problem 10	Selected load drum will not lower load, but will raise load	10-12
Problem 11	Load drum (1, 2, or 3) will not reach maximum speed	10-13
Problem 12	No boom hoist operation	10-14
Problem 13		
Problem 14	Boom will not boom up, but will boom down	10-16
Problem 15	Boom will not boom down, but will boom up	10-17
Problem 16	No luffing jib (drum 6) operation	10-18
Problem 17	Luffing jib will not reach maximum speed	10-19
Problem 18	Luffing jib will not boom up, but will boom down	10-20
Problem 19	Luffing jib will not boom down, but will boom up	10-21
Problem 20	No mast hoist (drum 5) operation	10-22
Problem 21	No swing operation, but engine loads	10-23
Problem 22	No swing operation, engine does not load	10-24
Problem 23	Hydraulic system (any) response is sluggish	10-25
Problem 24	Hydraulic system is operating hot	10-26
Problem 25	System pump will not return to neutral	10-27
Problem 26		
Problem 27	Mast rasing (live mast) cylinders will not raise or lower	10-29
Problem 28	Jacking cylinder(s) will not extend or retract	10-30
Problem 29		
Problem 30		
Problem 31	Mast pin cylinders will not extend or retract	10-33
Problem 32	Boom hinge pin cylinders will not extend or retract	10-34

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 10 TROUBLESHOOTING

GENERAL TROUBLESHOOTING

This troubleshooting section is designed for qualified service technicians familiar with the operation and repair of electrical and hydraulic equipment. It is not possible to predict all problems that might occur or the correct procedure for troubleshooting each problem. If a problem is encountered that is not covered in this manual, first consult your Manitowoc dealer. The Manitowoc Crane Care Lattice Team can also provide assistance.

SAFETY SUMMARY

Hazards are always a possibility when performing troubleshooting operations on heavy equipment. To minimize the risk of potential hazards and to prevent serious injury or death, comply with the following:

- Read the Operator Manual and Service/Maintenance Manual before beginning troubleshooting operations.
- Troubleshooting operations must be performed by a qualified service technician, competent in the repair and testing of electrical and hydraulic equipment. Manitowoc is not responsible for training personnel who might use this manual to perform troubleshooting operations.
- Whenever possible, turn off crane engine for your protection and keep unauthorized personnel away from the crane when troubleshooting.
- Never troubleshoot the crane alone. Always perform troubleshooting procedures with a qualified operator in crane cab. Maintain constant communication with this operator when performing operations that require crane engine to be running.
- Do not return crane to service after completion of maintenance or repair procedures until all guards and covers are re-installed, trapped air is bled from hydraulic systems, safety devices are enabled and maintenance equipment is removed.
- Perform a function check to ensure correct operation at completion of maintenance or repair operations.

The following warnings apply to all troubleshooting operations.

Manitowoc cannot foresee all hazards that may occur. Technicians shall be familiar with the equipment, trained in testing methods, and use common sense while troubleshooting to avoid other hazards.

WARNING

Eye, Skin, And Respiratory Hazards!

Wear proper eye and skin protection and avoid direct contact with battery acid, oil, or ether spray when searching for leaks, opening connections, or installing a pressure gauge.

Pressurized hydraulic oil can cause serious injury. Turn **off** engine, remove key, and relieve pressure on system before disconnecting, adjusting, or repairing any component.

Ensure that connections are made correctly, O-rings or gaskets are in place, and connectors are tight before pressurizing system.

Use necessary precautions to prevent electrical burns when checking battery charging and starter circuits.

Death or serious injury can occur if these warnings are ignored.

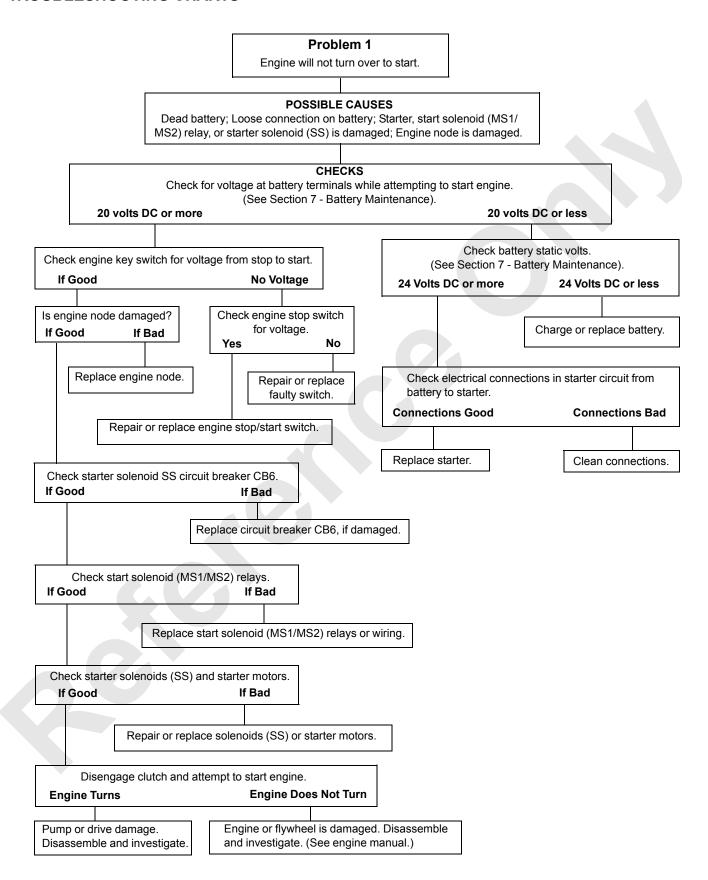
Unexpected Moving Part Hazard!

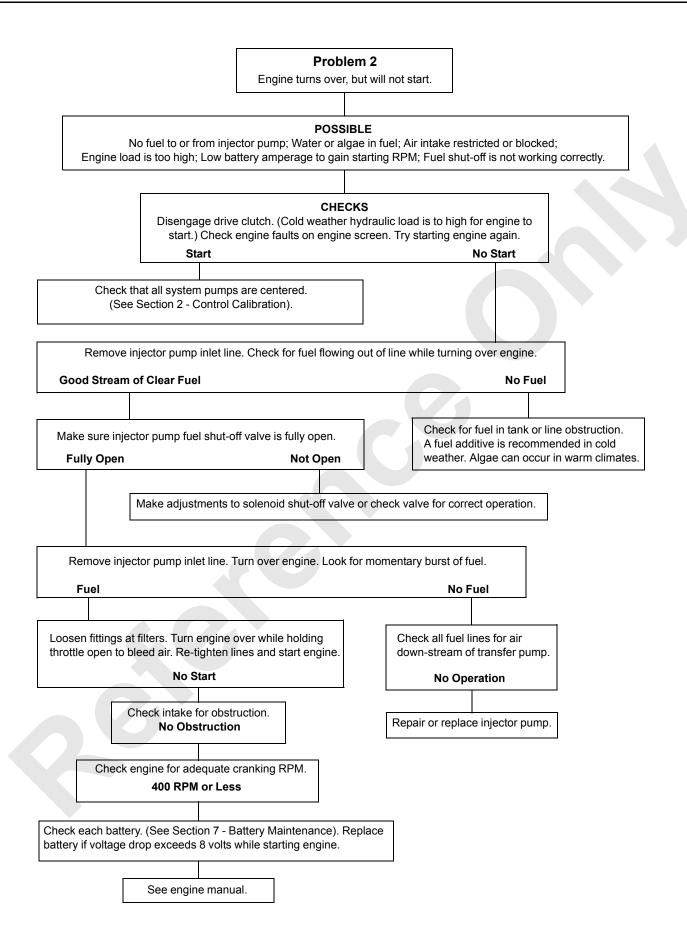
Keep personnel away from crane while manually actuating a valve or pump to avoid unexpected equipment movement that can cause death or serious injury.

GENERAL TROUBLESHOOTING

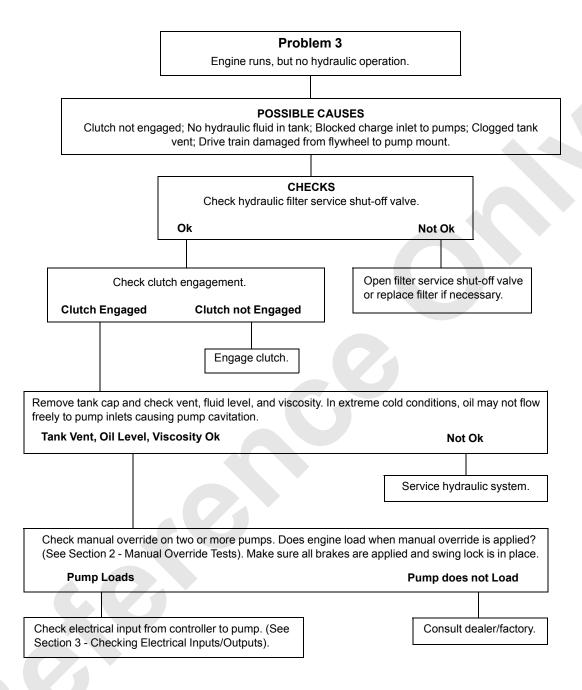
The following guidelines apply to all troubleshooting operations:

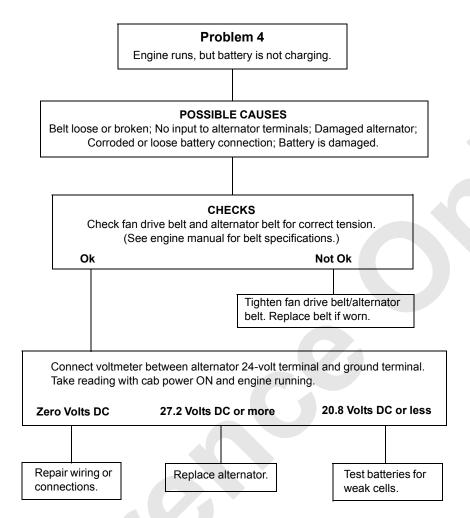
- Do not remove cylinders or counterbalance valve(s) from a cylinder until its working unit is restrained against movement.
- Do not use your hands to check for hydraulic oil leaks.
 Use a piece of cardboard to check for hydraulic oil leaks.
- Use a gauge of correct pressure range when checking hydraulic circuits.
- Check pressures at specified hydraulic component ports.
- Use the Rated Capacity Indicator/Limiter display and Main display for checking pump, motor, handle, brake, etc. components.
- Use in-line test boards or Manitowoc Universal Tester/ CAN Node Adapter (available from your Manitowoc dealer) for further testing of computer nodes and electrical circuits.

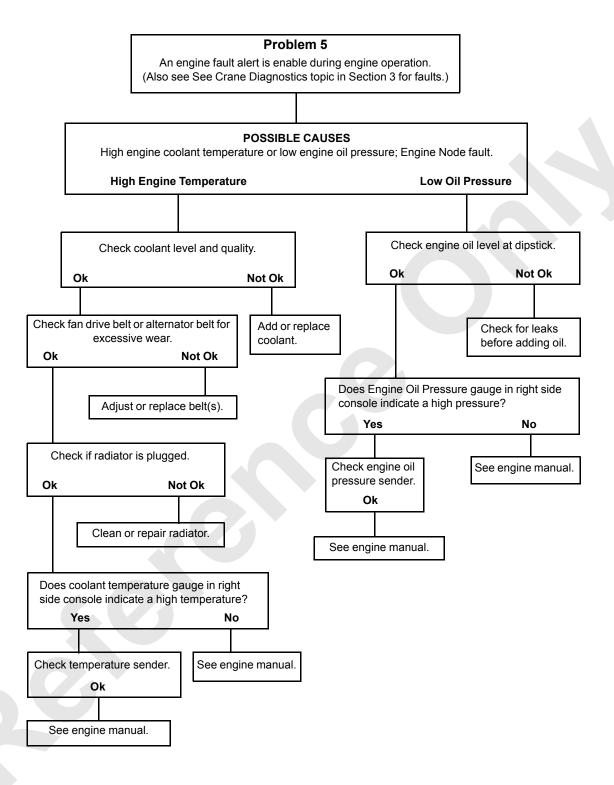

TROUBLESHOOTING CHARTS

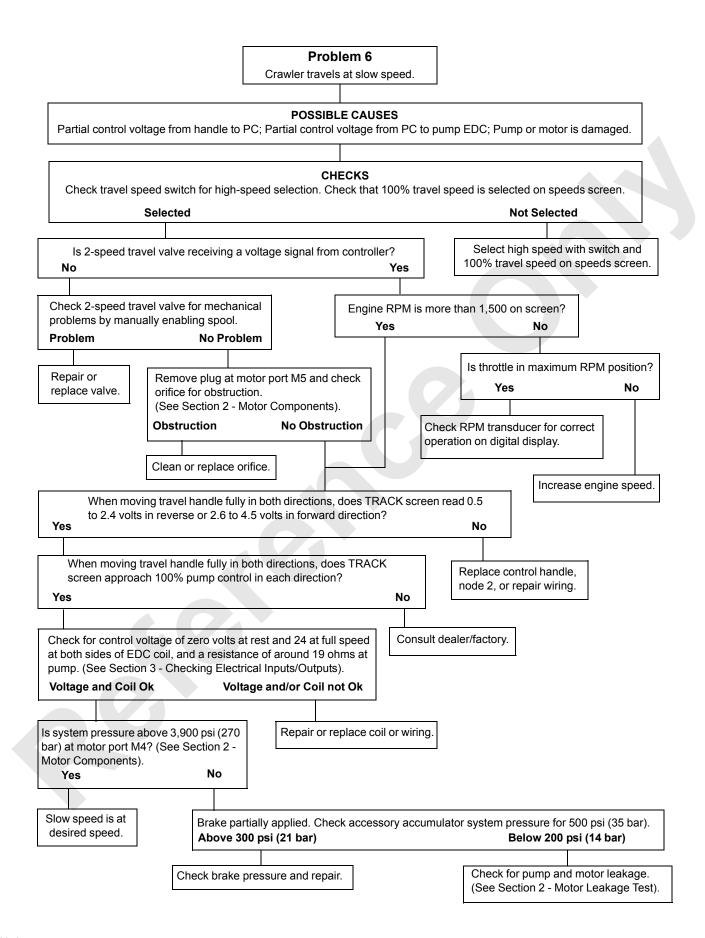

Troubleshooting Charts provide a series of flow charts that identify problems that could be encountered during normal operation. These charts contain instructions to assist in identifying and correcting problems. Follow the procedural

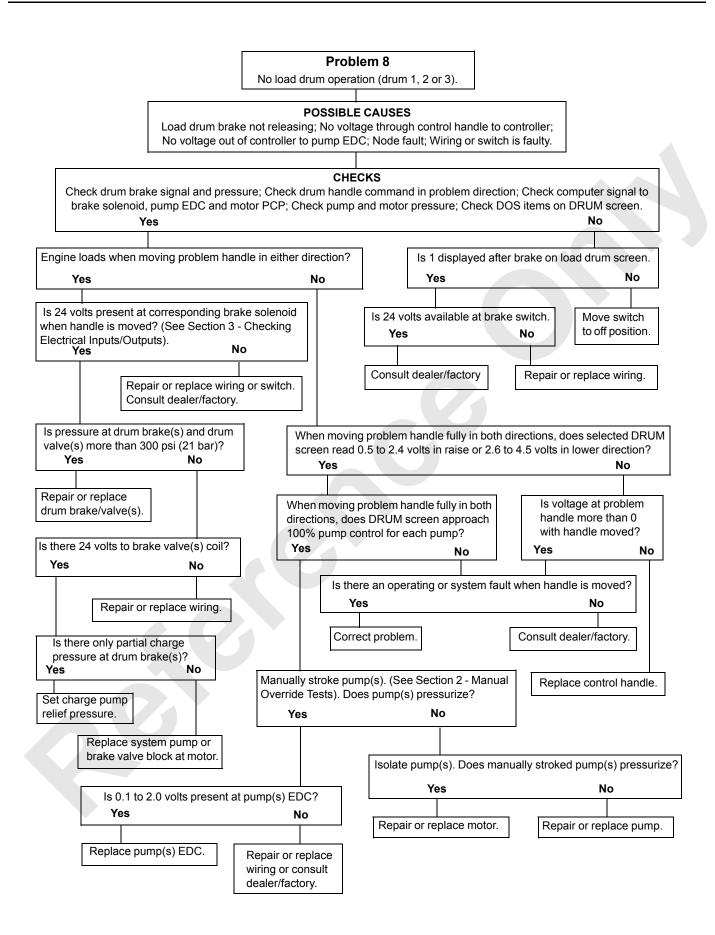
steps in the order indicated. Some steps direct you to other charts in this manual or reference a specific test that should be performed to move through the complete troubleshooting procedure. If directed, consult your Manitowoc dealer or the Manitowoc Crane Care Lattice Team before proceeding.

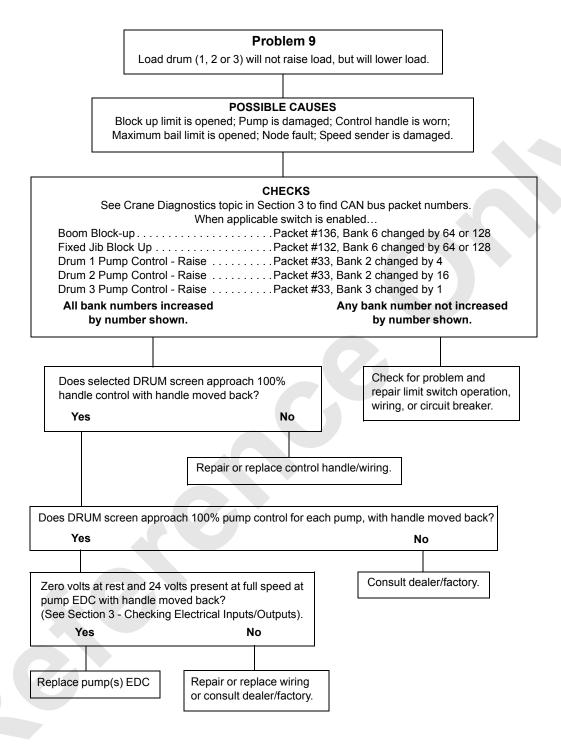


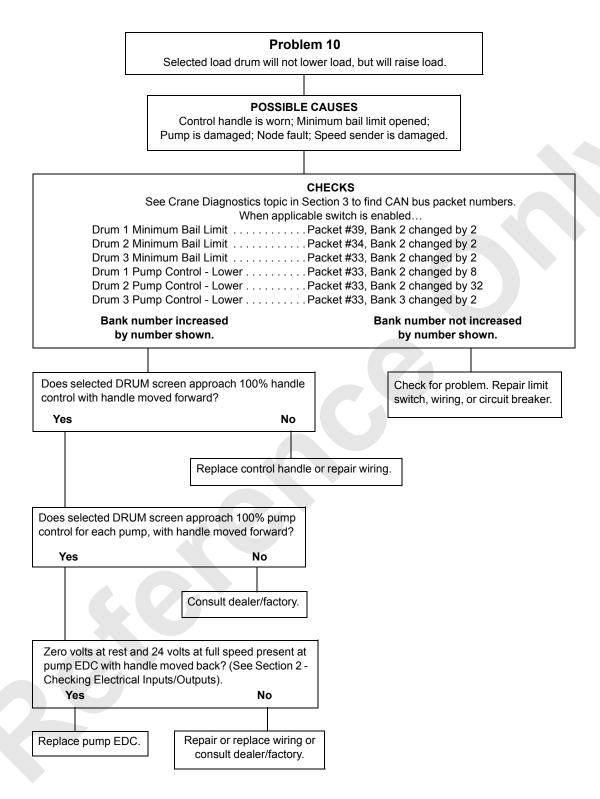

TROUBLESHOOTING CHARTS



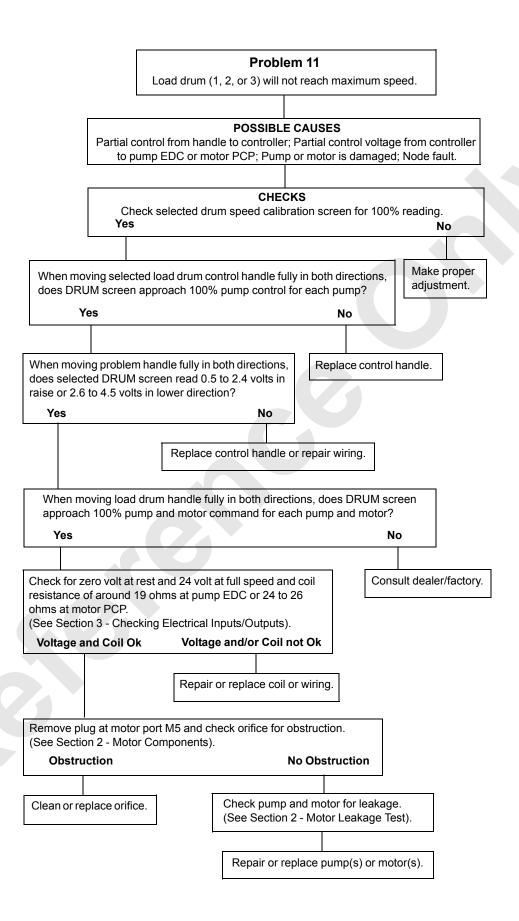


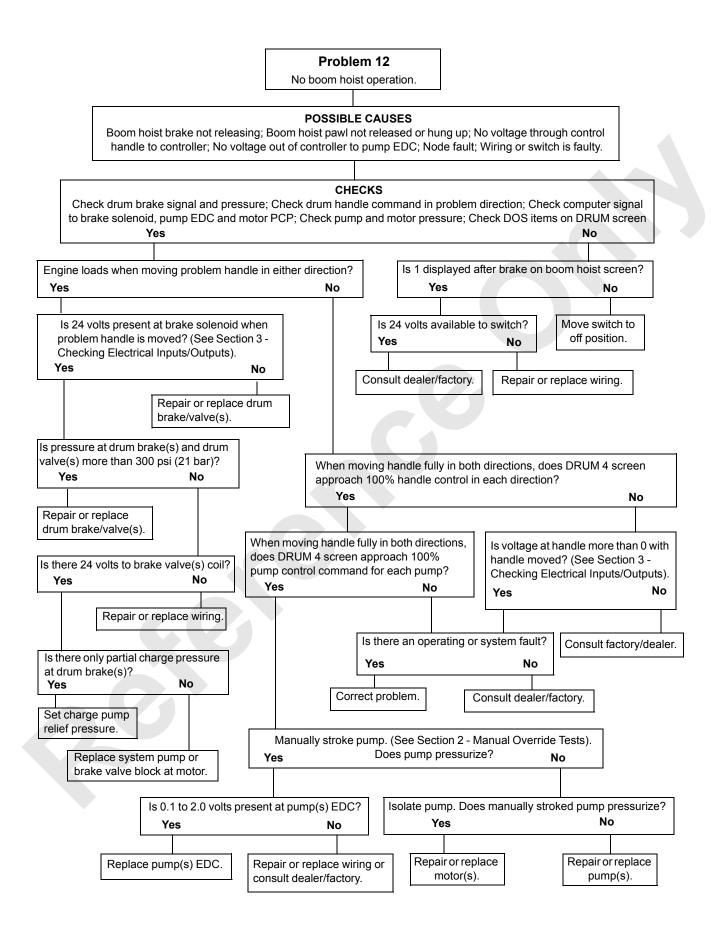


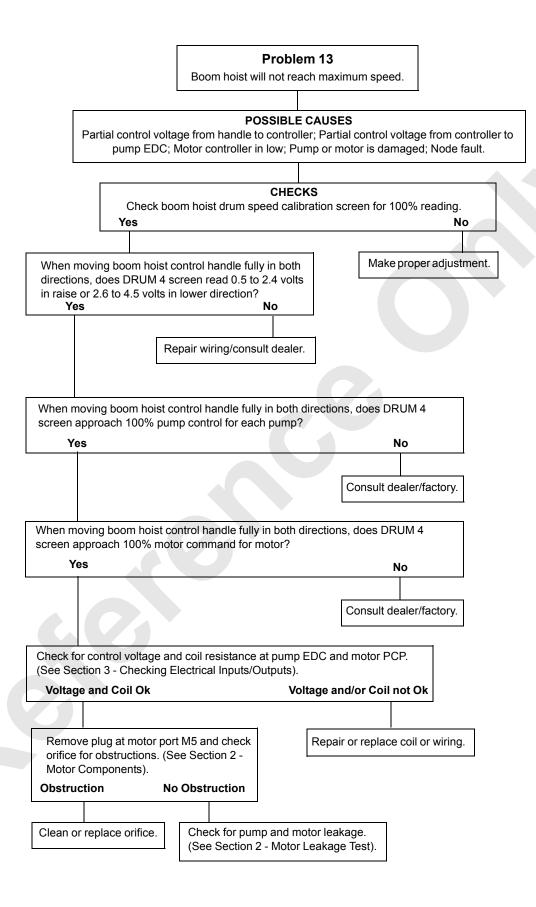


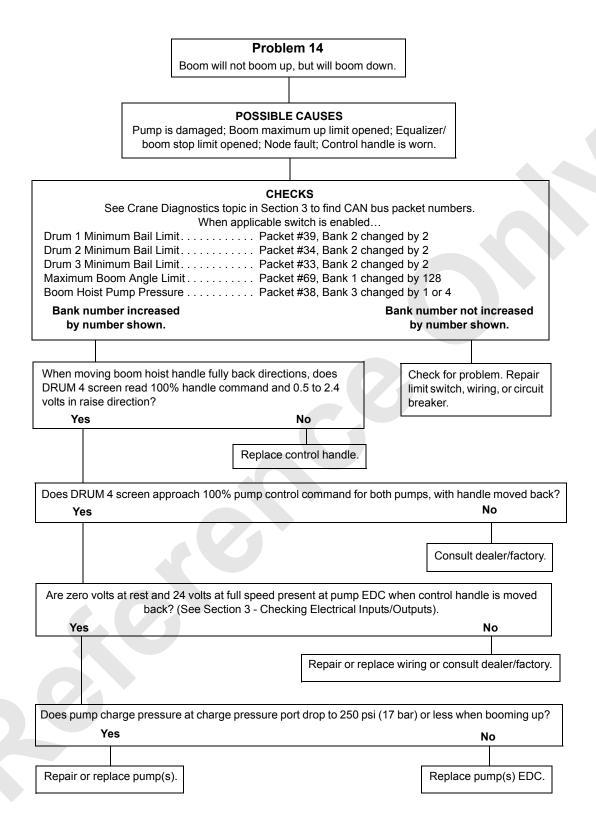


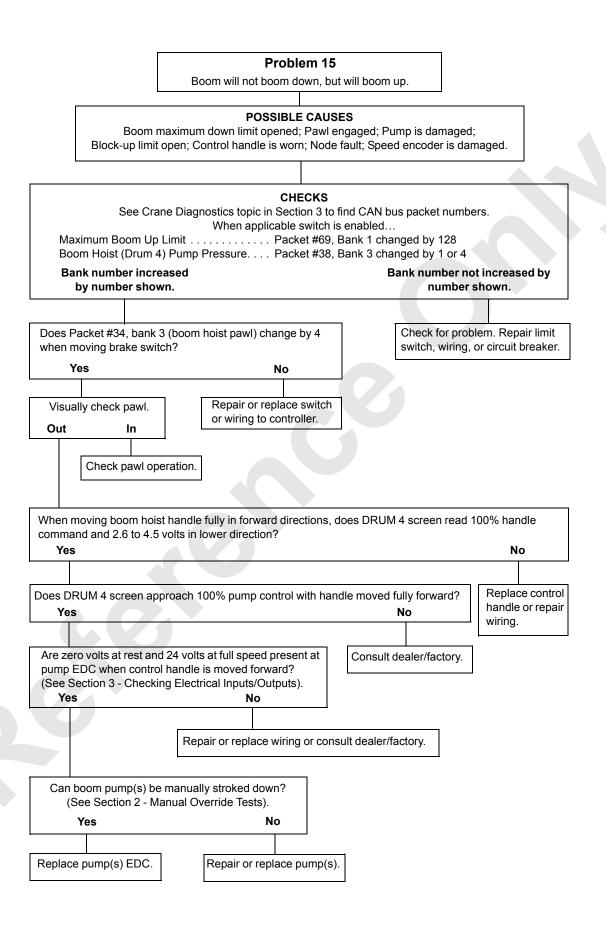
10-9

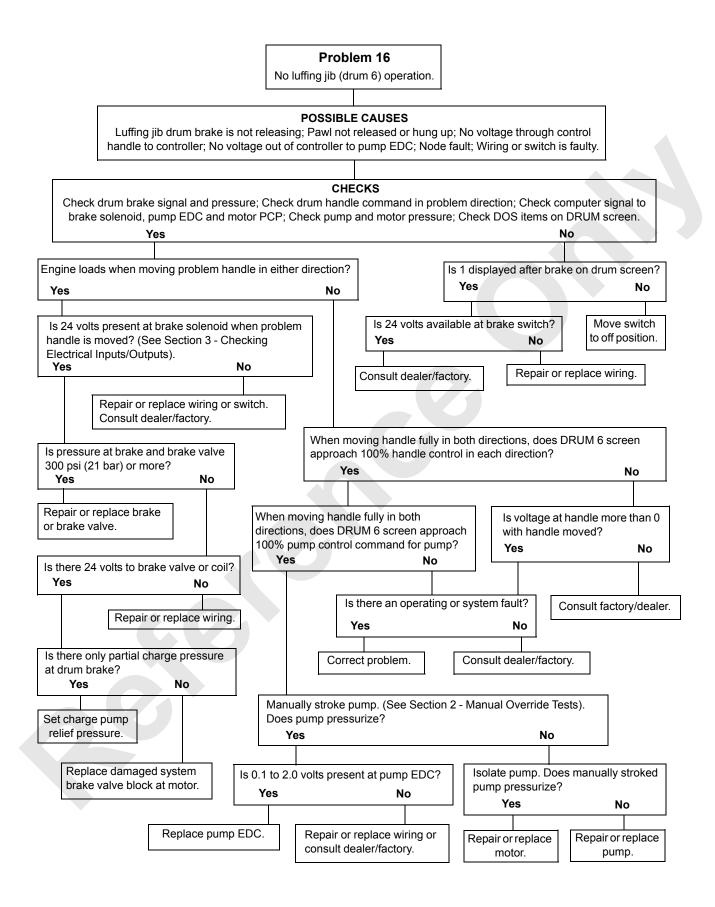


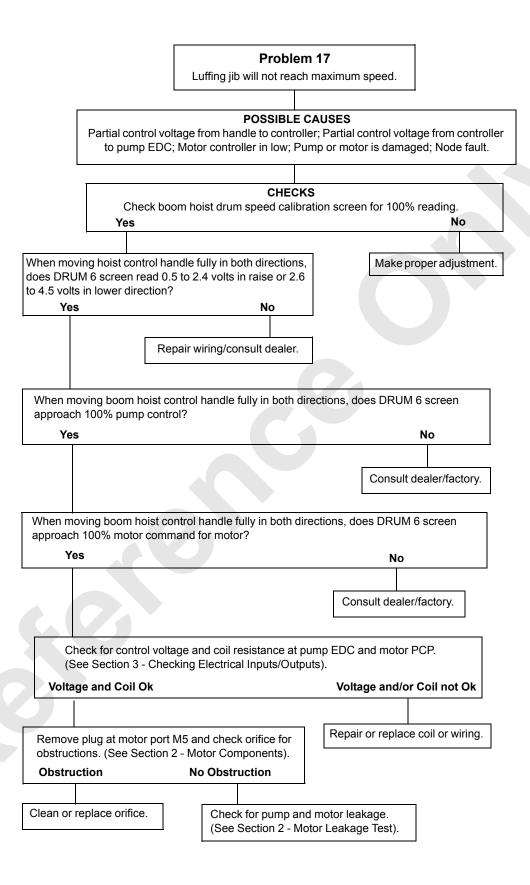


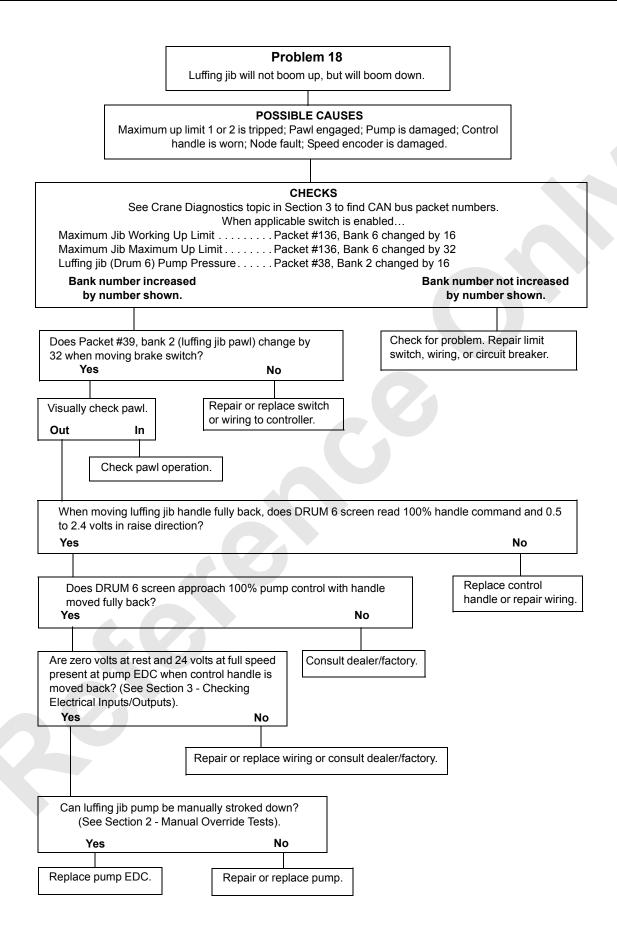


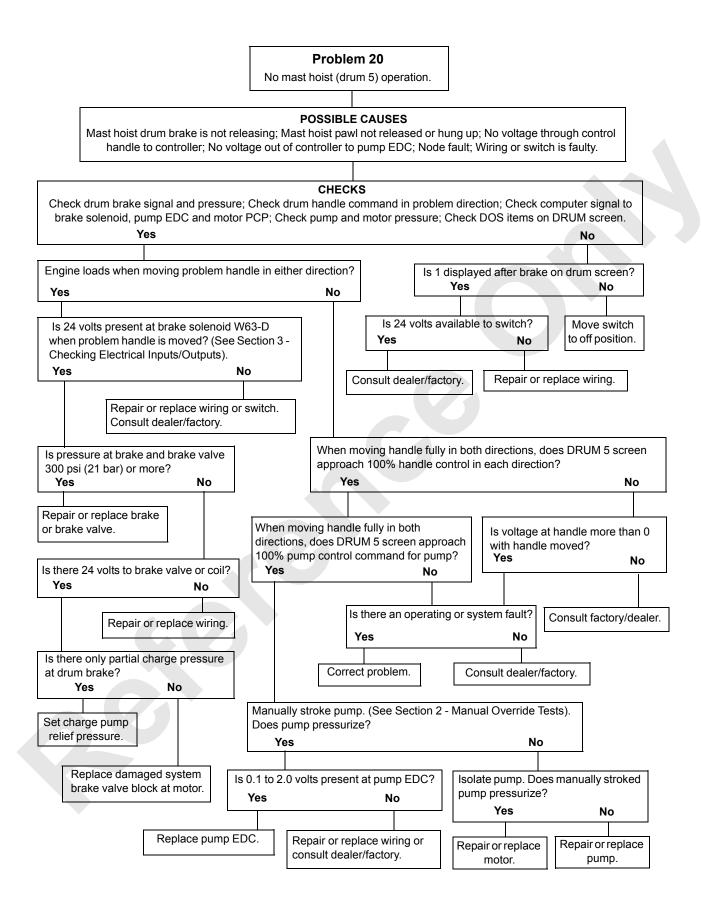


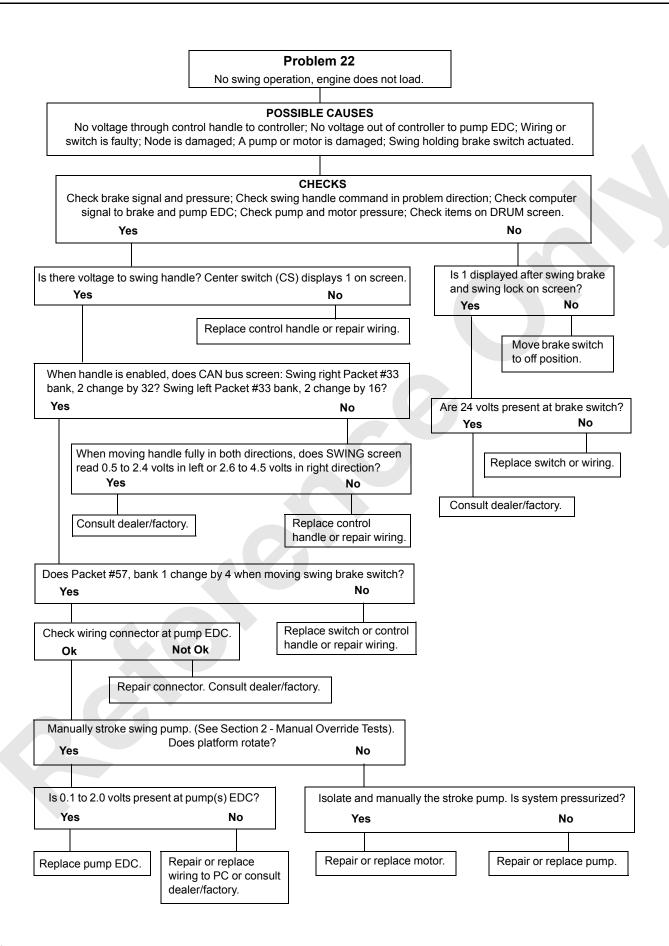


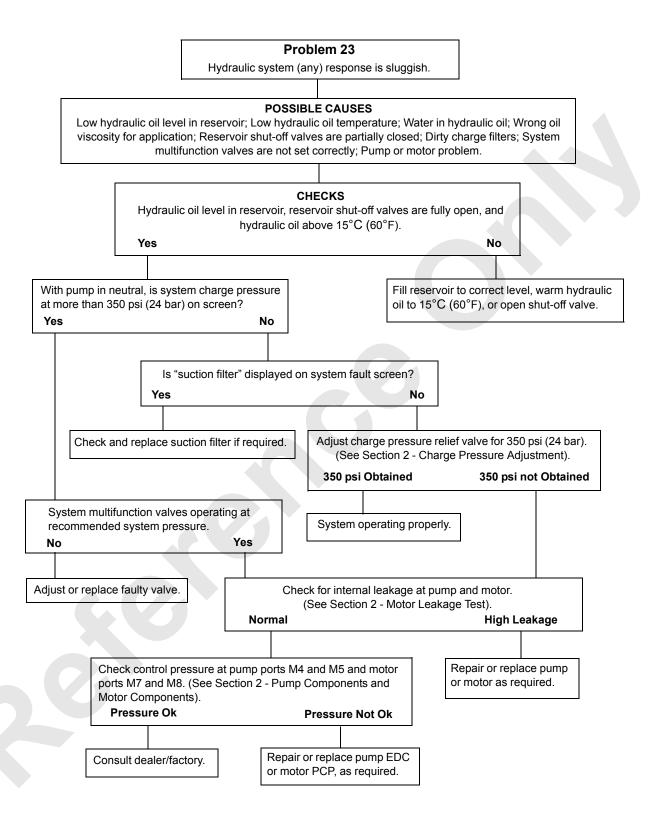


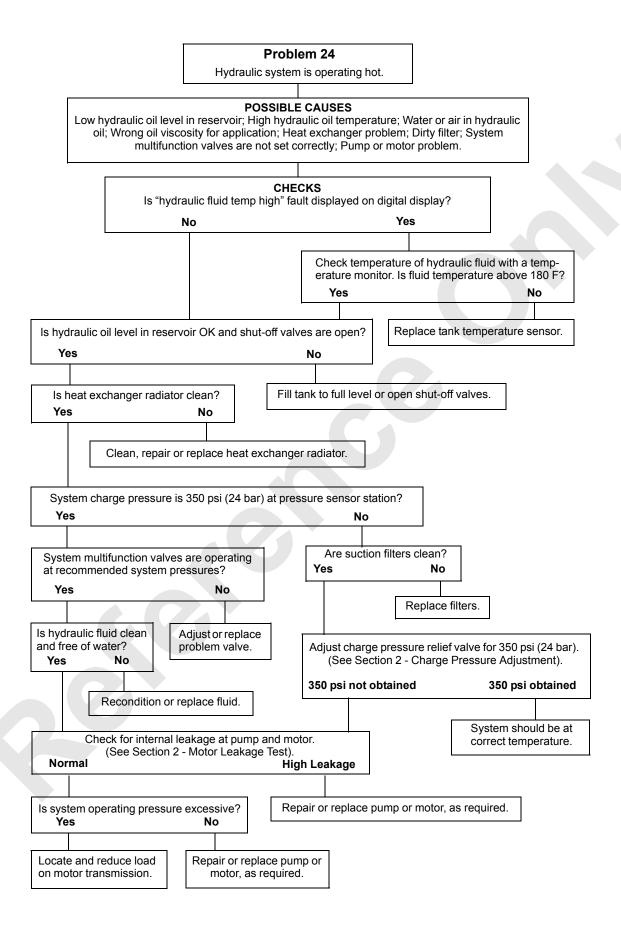


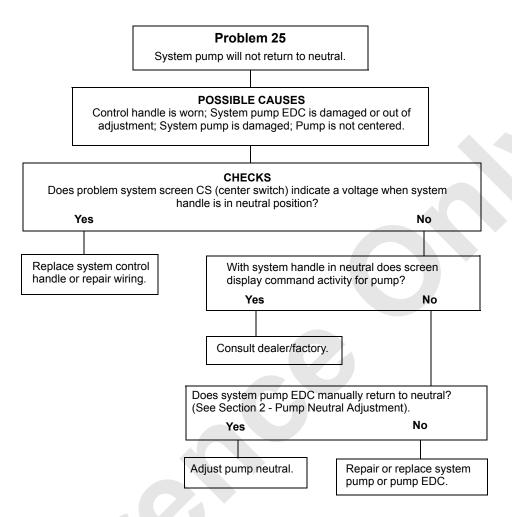


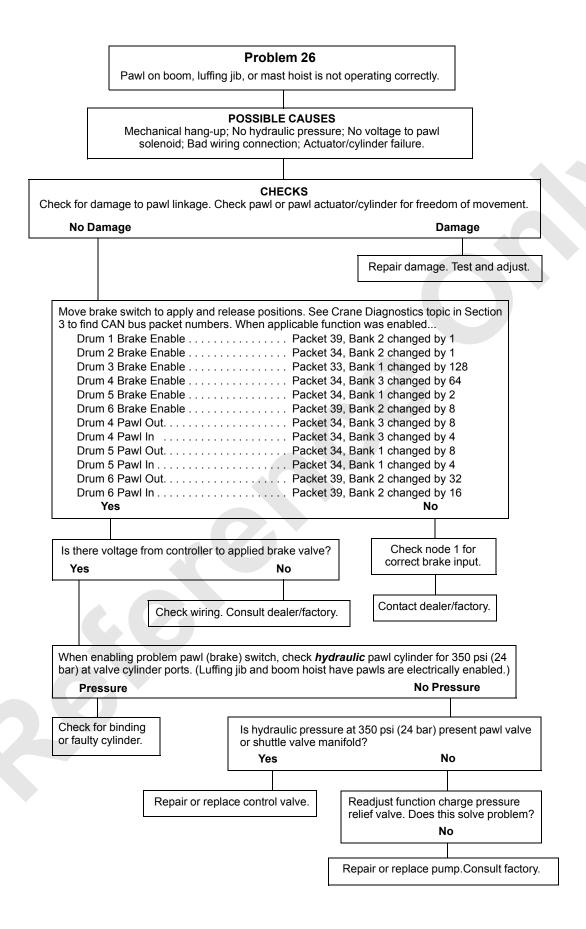


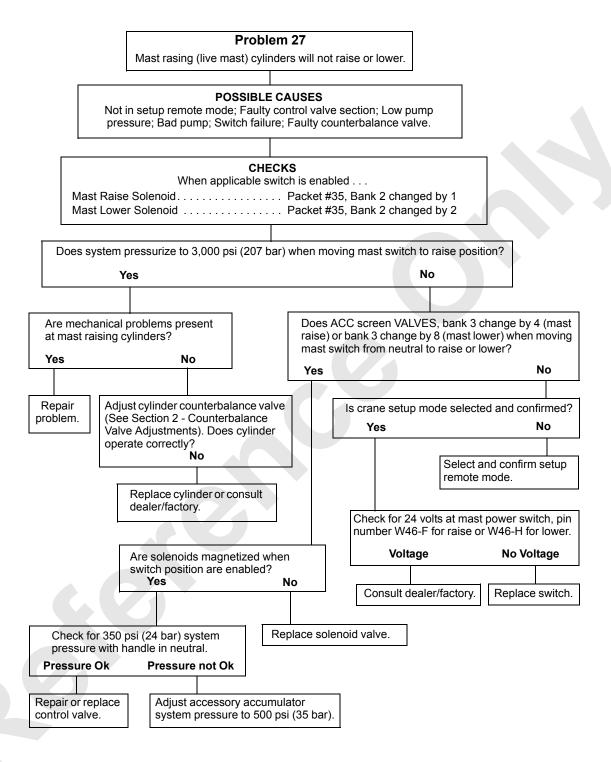


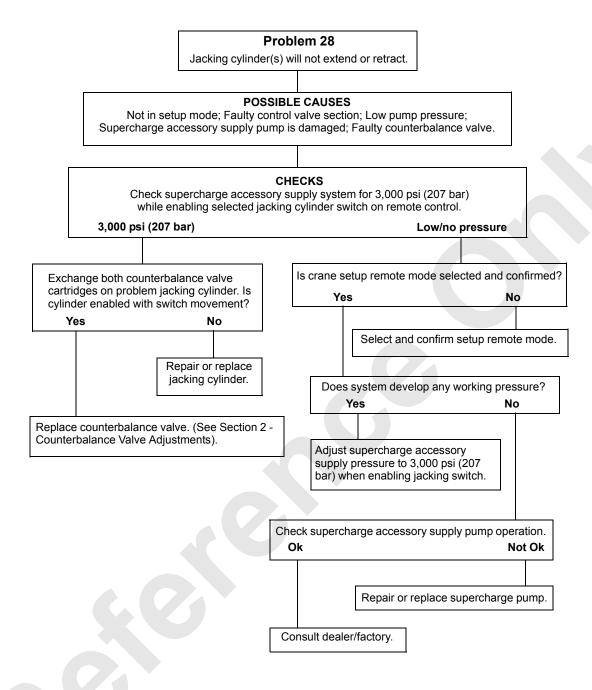


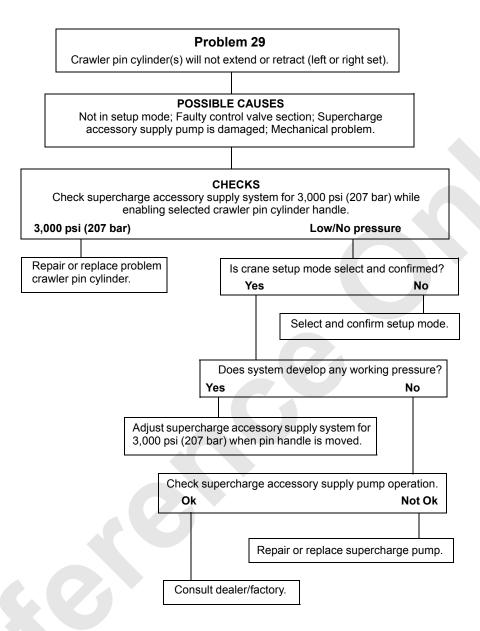


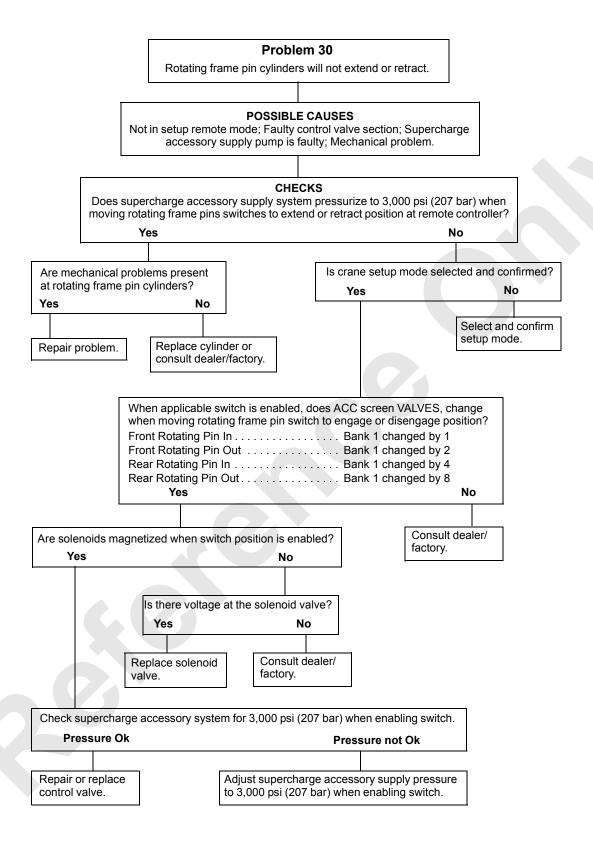


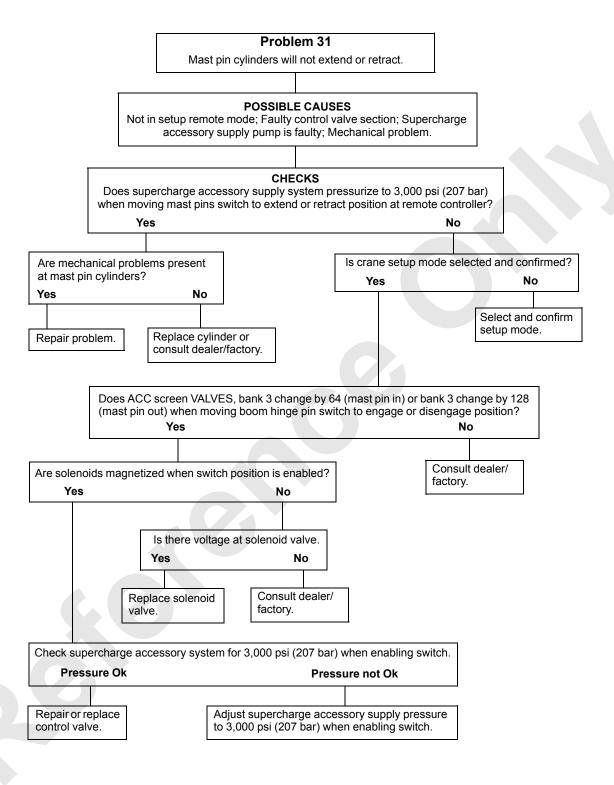


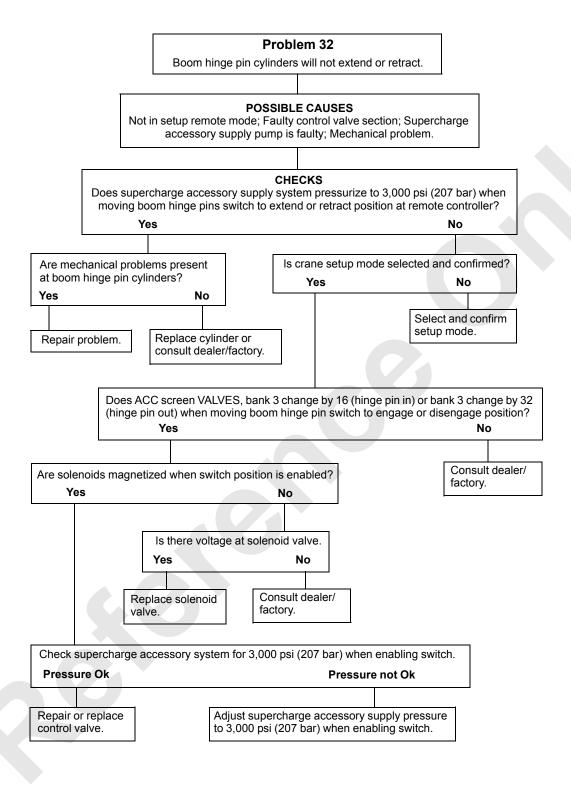


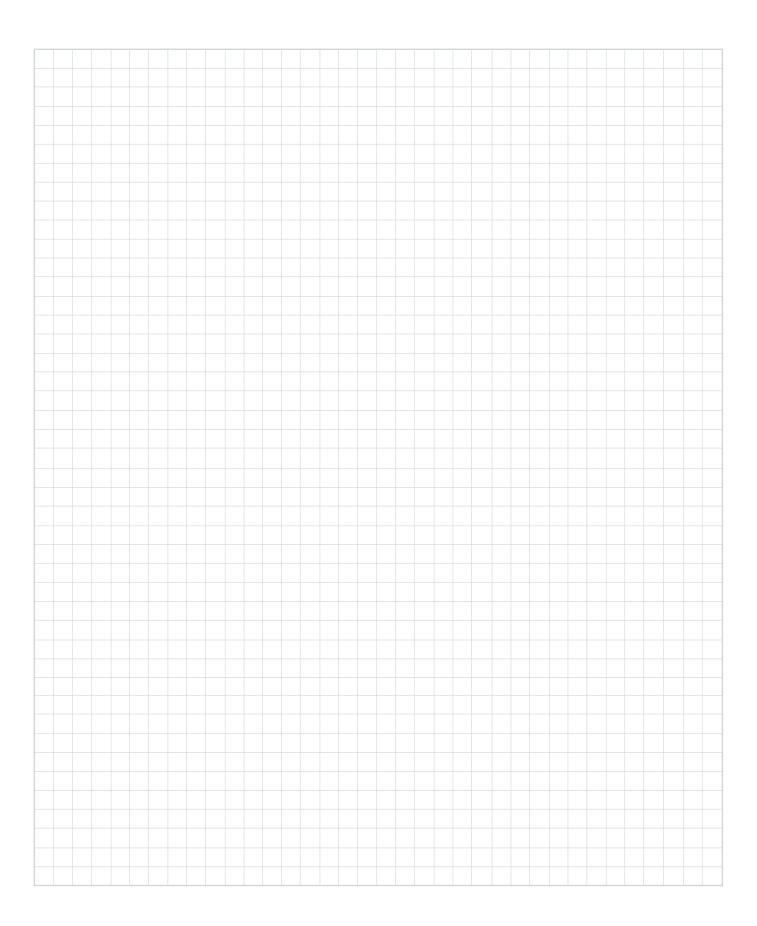












ALPHABETICAL INDEX

Accessory System Components	
Actuator Removal	
Automatic Boom Stop Adjustment	
Bail Limit Adjustment	
Battery Maintenance	
Block-Up Limit Adjustment	
Boom and Luffing Jib Angle Indicator Calibration	
Boom Hoist Pawl Adjustment	
Boom Hoist System Operation	
Boom	
Changing Oil	
Checking and Replacing Electrical Components	
Checking and Replacing Hydraulic Hoses	
Checking Electrical Inputs/Outputs	
Circuit Breaker Identification	
Continuous Innovation	
Crane Diagnostics	
Crawler Adjustment	
Crawler Pin Cylinders	
Description of Operation	
Dielectric Grease	
Diesel Particulate Filter — Tier 4	
Digital Display	. 3-34
Digital Input and Output Item Tables	
Disc Brake Operational Test	
Electric System	3-1
Electrical Schematics	3-1
Engine Air Cleaner Maintenance	
Engine Belt Routing	. 7-16
Engine Clutch Adjustment	. 7-10
Engine Cooling System	. 7-13
Engine Diagnostics	
Engine Speed Calibration	
Engine Throttle Adjustment	. 7-12
Environmental Protection	
Epic® Control System	. 1-26
Foot Throttle Controller	. 7-12
Function Speed/Torque Adjustment	
General Operation	
General Troubleshooting	
General Troubleshooting	. 10-1
Hoist Drawings	
Hoists	
Hydraulic Hand Pump	
Hydraulic Schematics	
Hydraulic System – General	
Hydraulic System Adjustment Procedures	
Hydraulic System Calibration Procedures	
Hydraulic System Maintenance	
Hydraulic System Specifications - 18000	
Hydraulic System	
Hydraulic Tank Level Sensor Calibration	. 2-43
Identification and Location of Components	1-4

Introduction	
Lattice Section Inspection and Lacing Replacement	. 4-15
Load Block and Hook-and-Weight Ball Inspection	
Lubrication	9-1
Lubrication	9-1
Luffing Jib Drum 6 (Optional) System	. 1-60
Main Hoist 1 System	. 1-42
Main Hoist 2 System	. 1-50
Manual Release of Swing Brake and Lock	6-1
Mast Angle Indicator Adjustment	4-7
Mast Hoist Drum 5 System	. 1-54
Mast Hoist Pawl Maintenance	5-3
Physical Boom Stop	4-6
Power Train	7-1
Pressure Sender Replacement	. 2-17
Replacing Desiccant Breather	2-9
Replacing Filters	2-6
Safe Maintenance Practices	1-2
Safety Messages	1-1
Safety Summary	. 10-1
Servicing Pumps	. 2-10
Sheave, Roller, and Drum Inspection	. 5-19
Shop Procedures	
Speed Sensor Adjustment	
Strap Inspection and Maintenance	4-9
Swing System Operation	
Swing	
Test Voltages	
Tightening Hydraulic Connections	
Travel System Operation	
Troubleshooting Charts	
Troubleshooting Charts	
Troubleshooting	
Turntable Bearing Bolt Torque	
Under Carriage	
Whip Line Hoist (Drum 3) System	
Wire Rope Inspection and Replacement	. 5-15

