OPERATOR MANUAL

Supplement

Crane Warm-up Procedures

ADANGER

An untrained operator subjects himself and others to death or serious injury. Do not operate this crane unless:

- You are trained in the safe operation of this crane. Manitowoc is not responsible for qualifying personnel.
- You read, understand, and follow the safety and operating recommendations contained in the crane manufacturer's manuals and load charts, your employer's work rules, and applicable government regulations.
- You are sure that all safety signs, guards, and other safety features are in place and in proper condition.
- The Operator Manual and Load Chart are in the holder provided on crane.

SECTION CONTENTS

Cra	ne Warm-up Procedures
	Engine
	Transmission 1
	Hoist
	Swing Drive and Turntable Bearing
	Axles
	Hydraulic Oil System

This Supplement provides information regarding the proper warm-up procedures for operating the crane in colder temperatures. The information provided here supplements the *Operator* and *Service Manuals* and must be used in conjunction with these manuals.

CRANE WARM-UP PROCEDURES

The following procedures detail the actions that must be taken to properly warm the different crane components before operating the crane.

NOTE: For temperatures below -9°C (15°F) refer to arctic lubricants and conditions in the Operator and Service Manuals.

Before starting the crane, ensure the appropriate lubricants are used to provide lubrication for the prevailing ambient temperatures in which the crane will operate in (a list of lubricants and their temperature ranges can be found in the Lubrication section of your crane's *Operator Manual*, by contacting your local Manitowoc distributor, or by contacting Manitowoc Crane Care directly).

CAUTION

Crane Damage Hazard!

Operating the crane with the incorrect lubricants and fluids for the prevailing ambient temperature and/or failing to adequately warm the crane prior to cold weather operation can lead to a failure of a crane component or system.

Always use Manitowoc recommended lubricants and fluids for the prevailing ambient temperature and properly start and warm the crane using the cold weather procedures found in this Operator Manual and supplement before operating the crane at full load.

Engine

NOTE: For National Crane engine warm-up procedures, refer to chassis manufacturer's manual.

Warm-up Procedures for All Temperature Ranges:

- **1.** Upon startup, allow the engine to idle for 3 to 5 minutes before operating with a load.
- 2. Cold Engine Startup: After allowing the engine to warm by idling it for 3 to 5 minutes, slowly increase the engine speed to provide adequate lubrication to the bearings and to allow the oil pressure to stabilize.

Transmission

NOTE: For National Crane transmission warm-up procedures, refer to chassis manufacturer's manual.

Operating the transmission with a sump temperature below normal operating temperature is limited to:

- operating in the neutral gear or
- driving with an unloaded crane while not exceeding 1500 engine RPM and not exceeding half throttle.

Alternate Warm-up Procedures for Truck Mount (TM/ TMS) Cranes:

- 1. Setup the crane on outriggers.
- **2.** Engage the transmission and allow crane to run at idle until the temperature of the transmission sump reaches normal operating temperature.

Hoist

Performing a warm-up procedure is recommended at every startup and is required at ambient temperatures below 4°C (40°F).

Warm-up Procedures:

- 1. Without operating the hoist function, warm the hydraulic oil (see *Hydraulic Oil System*, page 2).
- Once the hydraulic system is warm, operate the unloaded hoist, in both directions, at low speeds several times to prime all hydraulic lines with warm hydraulic oil and to circulate gear lubricant through the planetary gear sets.

Swing Drive and Turntable Bearing

Warm-up Procedures for Temperatures Above -7°C (20°F):

- Setup the crane on fully extended outriggers, with the boom fully retracted and near maximum lift angle with no load applied.
- 2. Rotate the superstructure at a speed of less than one RPM for at least one complete revolution in one direction, then rotate the superstructure at a speed of less than one RPM for at least one complete revolution in the opposite direction.

Warm-up Procedures for Temperatures Below -7°C (20°F):

- Ensure the boom is fully retracted and near maximum lift angle with no load applied.
- Rotate the superstructure at a speed of less than onehalf RPM for at least two complete revolutions in one direction, then rotate the superstructure at a speed of less than one-half RPM for at least two complete revolutions in the opposite direction.

Axles

NOTE: For National Crane axle warm-up procedures, refer to chassis manufacturer's manual.

Hydraulic Oil System

Operating Limits and Warm-up Procedures:

• From 4°C to -10°C (40°F to 15°F): Crane operation without a load is allowed with medium engine RPM and medium function speed (joystick position) until the fluid reaches at least 10°C (50°F). It is then recommended that all crane functions be cycled to remove cold fluid from all components and cylinders of the hydraulic system. If there is any unusual sound coming from the

- crane's hydraulic pumps or motors, stop the operation and engine immediately and contact a Manitowoc distributor.
- From 10°C to 4°C (50°F to 40°F): Crane operation with a load is allowed with medium engine RPM and medium function speed (joystick position) until the fluid reaches at least 10°C (50°F).
- From 95°C to 10°C (200°F to 50°F): Crane operation with a load is allowed with no restrictions.
- Above 95°C (200°F): No crane operation is allowed. Let the crane's hydraulic oil cool by running the engine at idle with no functions actuated.

National Crane 1400A

Operator Manual

California Proposition 65

Breathing diesel engine exhaust exposes you to chemicals known to the State of California to cause cancer and birth defects or other reproductive harm.

- Always start and operate the engine in a well-ventilated area.
- If in an enclosed area, vent the exhaust to the outside.
- Do not modify or tamper with the exhaust system.
- Do not idle the engine except as necessary.

For more information, go to www.P65warnings.ca.gov/diesel

Batteries, battery posts, terminals, and related accessories can expose you to chemicals, including lead and lead compounds, which are known to the State of California to cause cancer and birth defects or other reproductive harm. Wash hands after handling. For more information, go to www.P65warnings.ca.gov

California Spark Arrestor

Operation of this equipment may create sparks that can start fires around dry vegetation. A spark arrestor may be required. The owner/operator should contact local fire agencies for laws or regulations relating to fire prevention requirements.

The original language of this publication is English.

OPERATOR MANUAL

This manual has been prepared for and is considered part of the

1400A

This Manual is divided into the following sections:

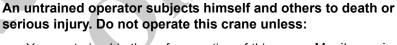
SECTION 1 INTRODUCTION

SECTION 2 SAFETY PRECAUTIONS

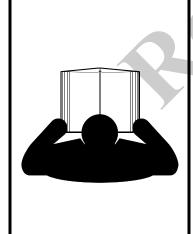
SECTION 3 CONTROLS AND OPERATING PROCEDURES

SECTION 4 SET-UP

SECTION 5 LUBRICATION


SECTION 6 MAINTENANCE CHECKLIST

NOTICE


The crane serial number is the only method your distributor or the factory has of providing you with correct parts and service information.

The crane serial number is identified on the builder's decal attached to the right side of the turret. *Always furnish crane serial number* when ordering parts or communicating service problems with your distributor or the factory.

ADANGER

- You are trained in the safe operation of this crane. Manitowoc is not responsible for qualifying personnel.
- You read, understand, and follow the safety and operating recommendations contained in the crane manufacturer's manuals and load charts, your employer's work rules, and applicable government regulations.
- You are sure that all safety signs, guards, and other safety features are in place and in proper condition.
- The Operator's Manual and Load Chart are in the holder provided on crane.

SECTION 1	. Introduction
General	
Supplemental Information	
Safety Information	
Notice To Owner/User	
Basic Nomenclature	
SECTION 2 Safet	y Precautions
Safety Messages	2-1
General	
Safety Alert Symbol	
Signal Words	
General	
Accidents	
Operator's Information	
Operator's Qualifications	
Operational Aids	
Rated Capacity Limiter (RCL) Systems (If Equipped)	2-4
Anti-Two-Blocking Device	2-4
Work Area Definition System (WADS) (If Equipped)	2-5
Crane Stability/Structural Strength	2-5
Load Charts	
Work Site	2-6
Wind Forces	
Lifting Operations	
Counterweight	
Outrigger Lift Off	
Multiple Crane Lifts	
Electrocution Hazard	
Set-Up and Operation	
Electrocution Hazard Devices	
Electrical Contact	2-11
Special Operating Conditions and Equipment	2-11
Personnel Handling	2-11
Environmental Protection	
Maintenance	
Service and Repairs	
Lubrication	
Tires	
Wire Rope	
Sheaves	
Batteries	
Engine	
Transporting the Crane	
Travel Operation	
Work Practices.	
Personal Considerations	
Crane Access	
Job Preparation	
Working	
Lifting	
Hand Signals.	
Boom Extension.	
Parking and Securing	
Shut-Down	
Cold Weather Operation	2-22

National Crane TOC-1

	fects on Hook Blocks	
	fects on Hydraulic Cylinders	
	ction	
	ection	
	ture Inspection	
Carrier Insp	pection	2-29
SECTION 3	Controls and Operating Pro	cedures
	trols	
Truck Cab I	Ignition Switch	3-1
	e Off	
Park Brake		3-2
Engine Spe	eed Governor	3-2
Neutral Star	rt/Safety Switch	3-2
	• • • • • • • • • • • • • • • • • • • •	
	Controls	
	el Indicators	
	gine Throttle	
	Controls	
	Oil Temperature Warning Light	
Crane Igniti	ion Switch	3-4
Crane Fund	ction Power Switch	3-4
	orn Switch	
	trol Lever	
	e Pedal	
Swing Brake	e Switch	3-6
Adjustable S	Swing Speed Valve	3-6
Telescope (Control Lever	3-6
Boom Teles	scope Pedal (Optional)	3-6
Hoist Contro	ol Lever	3-6
	d Switch Hoist	
Hoist Rotati	ion Indicator (Optional)	3-6
	Control Lever	
	Control Pedal (Optional)	
Foot Throttl	le	3-7
	tle	
	ote Switch (Optional)	
	Outrigger Controls (Optional)	
Load Chart		3-7
	ent Indicator (RCL)	
	nate Controls	
	ter Controls	
	d Weather Fuel Mixture	
	oner Controls (Optional)	
	edures	
Equipment	Familiarization	
	Access	
	Checks	
	ner Operation	
	ock Check	
	C <u>.</u>	
	peration	
	Speed Operation	
	tion	
	ving the Truck Cab	
Before Mak	ring the Lift	3-10

Load Chart	3-10
Using the Load Chart	3-10
Lifting the Load	3-11
Unattended Crane	
Shut Down and preparation For Road Travel	
SECTION 4	Set-Un
Outrigger Setup	
Proper Leveling of the Crane	
Bubble Level Adjustment	
Site Selection	
Setting the Outriggers	
Outrigger Monitoring System (OMS) (Optional—Standard in North America)	
Jib Safety Information	
Side Folding-swing Around Jib Operation	
Deployment Procedure	
Stowing Procedure	
Jib Removal	
Jib Maintenance	
Anti-two-block Weight Installation	
Stow Pegs for hoist Cable	4-8
Multipart Line Reeving	
Using Multiple Part Lines	
Lifting A 33 Ton (66,000 Lbs) Load	
Installing Cable On The Hoist	4-9
Install the remainder of the cable, as applicable	4-9
Wedge Sockets	
Terminator Wedge Installation	
Wedge Socket Installation	
Dead-end Rigging	
SECTION 5	rication
General	F 1
Arctic Conditions Below -18°C (0°F)	
Chassis Grease	
Extreme Pressure Multipurpose Gear Lubricant	
Open Gear Lubricant	
Anti-wear Additives	
Surface Protection for Cylinder Rods	
Hydraulic Oil Inspection	
Standard Hydraulic Oil	
Intermediate Hydraulic Oil	5-3
Wide Range Intermediate Hydraulic Oil	5-3
Arctic Hydraulic Oil	5-3
Lubrication Points	5-3
Internal Cable Sheave Lubrication	5-5
Boom Lubrication Inner Wear Pad	5-5
Boom Lubrication Side/Bottom Wear Pad	5-5
Hoist Brake Oil	
Hoist Gearbox Oil	
1400A Hydraulic Oil Reservoir Level	
Wire Rope Lubrication	
C. topo Edicionalisti I I I I I I I I I I I I I I I I I I I	
SECTION 6 Maintenance C	hecklist
Crane Inspection And Maintenance	
orano mopositori fara maintenanse	0-1

National Crane TOC-3

Inspections	6-1
Special Boom Inspection	6-3
Stability	6-3
Hoist Cable Inspection and Maintenance	6-3
Keeping Records	6-3
Environmental Conditions	6-3
Dynamic Shock Loads	6-4
Precautions and Recommendations During Inspection	
Inspection	6-4
Wire Rope Replacement	6-5
Care of Wire Rope	6-5
Replacement Cable	6-5
Crane Adjustments and Repairs	6-6
Boom Extension Cable	6-6
Extension Jack Service and Maintenance	6-6
Lubrication	6-6
Rust Prevention	6-6
Hydraulic System	6-6
Oil Cooler	6-6
Hydraulic System Trouble Diagnosis	6-6
Tire Load And Inflation Table	6-10
Specifications 1400A	6-13
Hydraulic System	6-13
Hoist System	
Crane Operating Speeds	

SECTION 1 INTRODUCTION

SECTION CONTENTS

General	Notice To Owner/User
Supplemental Information 1-1	Basic Nomenclature
Safety Information	

GENERAL

This manual has been compiled to assist you in properly operating and maintaining your Model 1400A Series National Crane (Figure 1-1).

Before placing the crane in service, all operators and persons working around the crane must thoroughly read and understand the contents of this manual pertaining to **Safety, Operation and Maintenance**. Before moving a vehicle equipped with the crane, information relating to transporting the vehicle must be read and observed.

This manual must be retained with the machine for use by subsequent operating personnel.

Information in this manual does not replace federal, state or local regulations, safety codes or insurance requirements.

For detailed information concerning the operation and maintenance of the RCL system installed on the crane, see the manufacturer's manual supplied with the crane. Manufacturers of rated capacity limiters may refer to them in their manuals as a load moment indicator (LMI), a hydraulic capacity alert system (HCAS), a safe load indicator (SLI), or an ECS5; Manitowoc refers to these systems as a rated capacity limiter (RCL) throughout its *Operator's* and *Service Manuals*.)

The 1400A has been designed for maximum performance with minimum maintenance. With proper care, years of trouble-free service can be expected.

Constant improvement and engineering progress makes it necessary that we reserve the right to make specification and equipment changes without notice.

National Crane and our Dealer Network want to ensure your satisfaction with our products and customer support. Your local dealer is the best equipped and most knowledgeable to assist you for parts, service, and warranty issues. They have the facilities, parts, factory trained personnel, and the information to assist you in a timely manner. We request that you first contact them for assistance. If you feel you need

factory assistance, please ask the dealer's service management to coordinate the contact on your behalf.

Supplemental Information

Supplemental Information regarding Safety & Operation, Specifications, Service & Maintenance, Installation, and parts for options such as remote controls, augers, varying control configurations, baskets, grapples, etc. are included in separate manuals.

Whenever a question arises regarding your National product or this publication, please consult your National Dealer for the latest information. Your National Dealer is equipped with the proper tools, necessary parts, and trained personnel to properly maintain and service your crane.

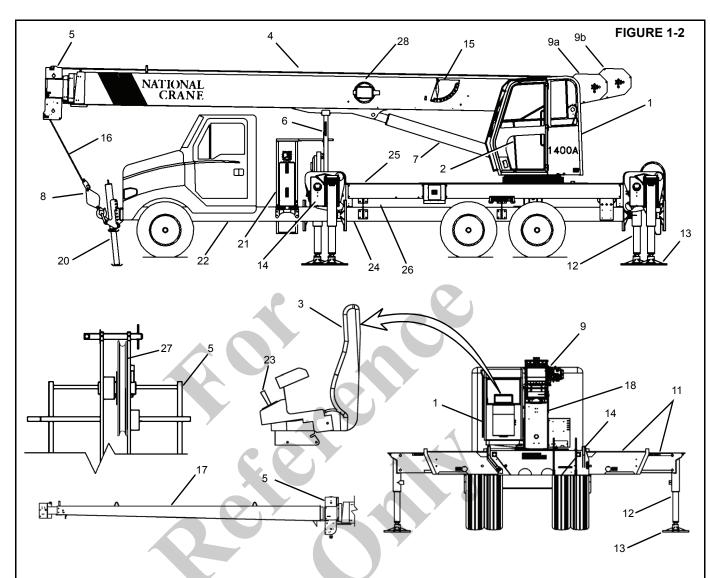
Safety Information

A Safety Compact Disc (CD) which includes sections on Operation, Safety and Maintenance for National Crane operators and owners is supplied when the crane is purchased new. Additional copies are available from your local distributor.

Notice To Owner/User

IMMEDIATELY report all accidents, malfunctions, and equipment damages to your local National Crane distributor. Following any accident or damage to equipment, the local National Crane distributor must be immediately advised of the incident and consulted on necessary inspections and repairs. Should the distributor not be immediately available, contact should be made directly with Manitowoc Crane Care. The crane must not be returned to service until it is thoroughly inspected for any evidence of damage. All damaged parts must be repaired or replaced as authorized by your local National Crane distributor or Manitowoc Crane Care.

New Owners


If you are the new owner of a National Crane, please register it with Manitowoc Crane Care so we have the ability to contact you if the need arises. Go to: http://www.manitowoccranes.com/MCG_CARE/ Includes/EN/changeofownership.cfm and complete the form.

Basic Nomenclature

The nomenclature used to describe parts of a National Crane are described in Figure 1-2. This nomenclature is used throughout this manual.

Item	Component			
1	Crane Cab			
2	Crane Cab console			
3	Operator's Seat			
4	Boom			
5	Boom Nose			
6	Boom Rest			
7	Lift Cylinder			
8	Downhaul Weight, Hook Block			
9	Hoist, Hoist (9a Main, 9b Auxiliary)			
11	Outrigger Beam			
12	Outrigger Stabilizer			
13	Outrigger Float			
14	Outrigger Box			

Item	Component		
15	Boom Angle Indicator		
16	Hoist Cable, Wire Rope		
17	Jib		
18	Turret		
20	Stabilizer Front Outrigger (SFO), Front Outrigger Jack		
21	Hydraulic Tank		
22	Hydraulic Pump (not shown)		
23	Hydraulic Remote Controller (HRC)		
24	Truck Frame		
25	Truck Bed		
26	Torsion Box Frame, T-Box Frame		
27	Sheave		
28	Rated Capacity Limiter (RCL) Reel		

NOTICE TO OWNER/USER

IMMEDIATELY report all accidents, malfunctions, and equipment damages to your local National Crane distributor. Following any accident or damage to equipment, the local National Crane distributor must be immediately advised of the incident and consulted on necessary inspections and repairs. Should the distributor not be immediately available, contact should be made directly with Manitowoc Crane Care. The crane must not be returned to service until it is thoroughly inspected for any evidence of damage. All damaged parts must be repaired or replaced as authorized by your local National Crane distributor or Manitowoc Crane Care.

SECTION 2 SAFETY PRECAUTIONS

SECTION CONTENTS			
Safety Messages	2-1	Maintenance	2-12
General		Service and Repairs	2-13
Safety Alert Symbol	2-1	Lubrication	2-14
Signal Words	2-2	Tires	2-14
General	2-2	Wire Rope	2-14
Accidents	2-2	Sheaves	2-15
		Batteries	2-16
Operator's Information		Engine	2-16
Operator's Qualifications	2-3	Transporting the Crane	2-16
Operational Aids	2-3	Travel Operation	
Rated Capacity Limiter (RCL) Systems (If Equipped)	2-4	Work Practices	2-18
Anti-Two-Blocking Device		Personal Considerations	
Work Area Definition System (WADS)	Z- -	Crane Access	2-18
(If Equipped)	2-5	Job Preparation	2-18
Crane Stability/Structural Strength		Working	
Load Charts		Lifting	
Work Site		Hand Signals	2-20
Wind Forces		Boom Extension	2-22
Lifting Operations	2-7	Parking and Securing	2-22
Counterweight		Shut-Down	
Outrigger Lift Off	2-8		
Multiple Crane Lifts	2-8	Cold Weather Operation	2-22
Electrocution Hazard		Temperature Effects on Hook Blocks	2-23
Set-Up and Operation	2-10	Temperature Effects on Hydraulic Cylinders .	2-23
Electrocution Hazard Devices		Overload Inspection	
Electrical Contact	Z-N	Boom Inspection	2-25

SAFETY MESSAGES

General

The importance of safe operation and maintenance cannot be overemphasized. Carelessness or neglect on the part of operators, job supervisors and planners, rigging personnel,

Special Operating Conditions and Equipment . . 2-11

Personnel Handling 2-11

Environmental Protection 2-12

and job site workers can result in their death or injury and costly damage to the crane and property.

Superstructure Inspection 2-27

Carrier Inspection 2-29

To alert personnel to hazardous operating practices and maintenance procedures, safety messages are used throughout the manual. Each safety message contains a safety alert symbol and a signal word to identify the hazard's degree of seriousness.

Safety Alert Symbol

This safety alert symbol means ATTENTION! Become alert - your safety is involved! Obey all safety messages that follow this symbol to avoid possible death or injury.

Signal Words

DANGER

Identifies hazards that will result in death or serious injury if the message is ignored.

WARNING

Identifies hazards that may result in death or serious injury if the message is ignored.

CAUTION

Identifies hazards that could result in minor or moderate injury if the message is ignored.

CAUTION

Without the safety alert symbol, identifies hazards that could result in property damage if the message is ignored.

NOTE: Emphasizes procedures.

operation

or

maintenance

GENERAL

It is impossible to compile a list of safety precautions covering all situations. However, there are basic principles that must be followed during your daily routine. Safety is your primary responsibility, since any piece of equipment is only as safe as the person at the controls.

Read and follow the information located in Model Specific Information near the end of this section.

This information has been provided to assist in promoting a safe working atmosphere for yourself and those around you. It is not meant to cover every conceivable circumstance which could arise. It is intended to present basic safety precautions that should be followed in daily operation.

Because you are the only part of the crane that can think and reason, your responsibility is not lessened by the addition of operational aids or warning devices. Indeed, you must guard against acquiring a false sense of security when using them. They are there to assist, not direct the operation. Operational aids or warning devices can be mechanical, electrical, electronic, or a combination thereof. They are subject to failure or misuse and should not be relied upon in place of good operating practices.

You are the only one who can be relied upon to assure the safety of yourself and those around you. Be a professional and follow the rules of safety.

Remember, failure to follow just one safety precaution could cause an accident that results in death or serious injury to personnel or damage to equipment. You are responsible for the safety of yourself and those around you.

ACCIDENTS

Following any accident or damage to equipment, the Manitowoc distributor must be immediately advised of the incident and consulted on necessary inspections and repairs. Should the distributor not be immediately available. contact should be made directly with Manitowoc Product Safety at the address below. The crane must not be returned to service until it is thoroughly inspected for any evidence of damage. All damaged parts must be repaired or replaced as authorized by your Manitowoc distributor and/or Manitowoc Crane Care.

If this crane becomes involved in a property damage and/or personal injury accident, immediately contact your Manitowoc distributor. If the distributor is unknown and/or cannot be reached, contact Product Safety at:

The Manitowoc Company, Inc.

1565 East Buchanan Trail Shady Grove, PA 17256-0021

Phone: 888-777-3378 (888-PSR.DEPT)

Fax: 717-593-5152

E-mail: product.safety@manitowoc.com

OPERATOR'S INFORMATION

You must **read** and **understand** this *Operator's Manual* and the Load Chart before operating your new crane. You must also view and understand the supplied safety video. This manual and Load Chart must be readily available to the operator at all times and must remain in the cab (if equipped) or operator's station while the crane is in use.

The Operator's Manual supplied with and considered part of your crane must be read and completely understood by each person responsible for assembly, disassembly, operation and maintenance of the crane.

No personnel shall be allowed to climb onto the crane or enter the crane cab or operator's station unless performance of their duties require them to do so, and then only with knowledge of the operator or other qualified person.

Allow **No One** other than the operator to be on the crane while the crane is operating or moving, unless they are seated in a two-man cab.

Do not remove the *Load Chart*, this *Operator's Manual*, or any decal from this crane.

Inspect the crane every day (before the start of each shift). Ensure that routine maintenance and lubrication are being dutifully performed. Don't operate a damaged or poorly maintained crane. You risk lives when operating faulty machinery - including your own.

If adjustments or repairs are necessary, the operator shall notify the next operator.

OPERATOR'S QUALIFICATIONS

Qualified person is defined as one who by reason of knowledge, training and experience is thoroughly familiar with crane operations and the hazards involved. Such a person shall meet the operator qualifications specified in Occupational Safety and Health Administration (OSHA) Regulations (United States Federal Law), in ASME B30.5 American National Standard, or in any other applicable federal, state or local laws.

Ensure that all personnel working around the crane are thoroughly familiar with safe operating practices. You must be thoroughly familiar with the location and content of all placards and decals on the crane. Decals provide important instructions and warnings and must be read prior to any operational or maintenance function.

Refer to the *Parts Manual* for this crane for the locations of all safety decals.

You must be familiar with the regulations and standards governing cranes and their operation. Work practice requirements may vary slightly between government regulations, industry standards, and employer policies so a thorough knowledge of all such relevant work rules is necessary.

An untrained operator subjects himself and others to death or serious injury.

You must not operate this machine unless:

- You have been trained in the safe operation of this machine.
- You read, understand, and follow the safety and operating recommendations contained in the manufacturer's manuals, your employer's work rules, and applicable government regulations.
- You are sure the machine has been inspected and maintained in accordance with the manufacturer's manuals and is operating properly.
- You are sure that all safety signs, guards, and other safety features are in place and in proper condition.

Do not attempt to operate the crane unless you are trained and thoroughly familiar with all operational functions. Controls and design may vary from crane to crane; therefore, it is important that you have specific training on the particular crane you will be operating.

Training is ESSENTIAL for proper crane operation. Never jeopardize your own well-being or that of others by attempting to operate a crane on which you have not been trained.

You must be mentally and physically fit to operate a crane. Never attempt to operate a crane while under the influence of medication, narcotics, or alcohol. Any type of drug could impair physical, visual and mental reactions, and capabilities.

As operator of this crane, you are granted the authority to stop and refuse to lift loads until safety is assured.

OPERATIONAL AIDS

Operational aids are accessories that provide information to facilitate operation of a crane or that take control of particular functions without action of the operator when a limiting condition is sensed, as stated in the latest revision of the ASME B30.5 standard. Examples of such devices include, but are not limited to, the following: anti-two-block device, rated capacity indicator, rated capacity limiter, boom angle or radius indicator, boom length indicator, crane level indicator, hoist drum rotation indicator, load indicator, and wind speed indicator.

Manitowoc remains committed to providing reliable products that enable users and operators to safely lift and position loads. Manitowoc has been an industry leader in the incorporation of operational aids into the design of its cranes. Federal law requires that cranes be properly maintained and kept in good working condition. The manuals that Manitowoc provides that are specific for each crane and the manufacturer's manuals for the operational aids shall be followed. If an operational aid should fail to work properly, the crane user or owner must assure that repair or recalibration is accomplished as soon as is reasonably possible. If immediate repair or recalibration of an operational aid is not possible and there are exceptional circumstances which justify continued short-term use of the crane when operational aids are inoperative or malfunctioning, the following requirements shall apply for continued use or shutdown of the crane:

- Steps shall be taken to schedule repairs and recalibration immediately. The operational aids shall be put back into service as soon as replacement parts, if required, are available and the repairs and recalibration can be carried out. Every reasonable effort must be made to expedite repairs and recalibration.
- When a Load Indicator, Rated Capacity Indicator, or Rated Capacity Limiter is inoperative or malfunctioning, the designated person responsible for supervising the lifting operations shall establish procedures for determining load weights and shall ascertain that the weight of the load does not exceed the crane ratings at the radius where the load is to be handled.
- When a Boom Angle or Radius Indicator is inoperative or malfunctioning, the radius or boom angle shall be determined by measurement.
- When an Anti-Block Device, Two-Blocking Damage Prevention or Two-Block Warning Device is inoperative or malfunctioning, the designated person responsible for supervising the lifting operations shall establish procedures, such as assigning an additional signal person to furnish equivalent protection. This does not apply when lifting personnel in load-line supported personnel platforms. Personnel shall not be lifted when anti-two-block devices are not functioning properly.

- When a Boom Length Indicator is inoperative or malfunctioning, the designated person responsible for supervising the lifting operations shall establish the boom lengths at which the lift will be made by actual measurements or marking on the boom.
- When a Level Indicator is inoperative or malfunctioning, other means shall be used to level the crane.

Rated Capacity Limiter (RCL) Systems (If Equipped)

Your crane may be equipped with an RCL system which is intended to aid the operator. An RCL is a device that automatically monitors radius, load weight, and load rating and prevents movements of the crane, which would result in an overload condition.

Test daily for proper operation. Never interfere with the proper functioning of operational aids or warning devices.

Under **no condition** should it be relied upon to replace the use of *Load Charts* and operating instructions. Sole reliance upon these electronic aids in place of good operating practices can cause an accident.

Know the weight of all loads and always check the capacity of the crane as shown on the *Load Chart* before making any lifts.

NEVER exceed the rated capacity shown on the *Load Chart*. Always check the *Load Chart* to ensure the load to be lifted at the desired radius is within the rated capacity of the crane.

For detailed information concerning the operation and maintenance of the RCL system installed on the crane, see the RCL manufacturer's manual supplied with the crane. Manufacturers of rated capacity limiters may refer to them in their manuals as a load moment indicator (LMI), a hydraulic capacity alert system (HCAS), a safe load indicator (SLI), or an EKS5; Manitowoc refers to these systems as a rated capacity limiter (RCL) throughout its *Operator's* and *Service Manuals*.)

Anti-Two-Blocking Device

This crane should have a functional Anti-Two-Block and Control Lock-Out System. Test daily for proper operation.

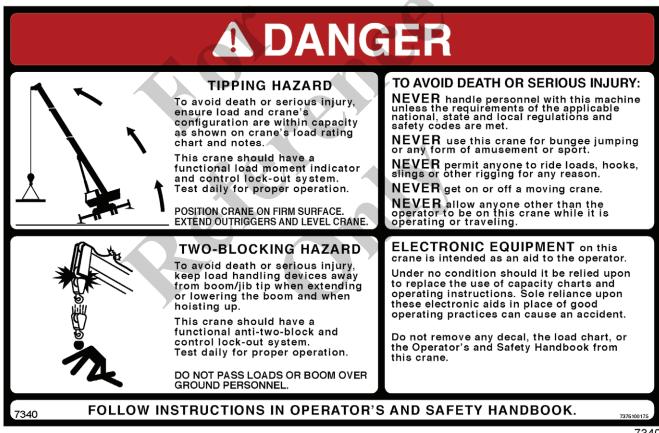
Two-blocking occurs when the load block (hook block, headache ball, rigging, etc.) comes into physical contact with the boom (boom nose, sheaves, boom extension, etc.). Two-blocking can cause hoist lines (wire rope), rigging, reeving, and other components to become highly stressed and overloaded in which case the wire rope may fail allowing the load, block, etc. to free fall.

Two-blocking is more likely to occur when both the main and auxiliary hoist lines are reeved over the main boom nose and boom extension nose respectively. An operator, concentrating on the specific line being used, may telescope

or lower the boom allowing the other hoist line attachment to contact the boom or boom extension nose, thus causing damage to the sheaves, or causing the wire rope to fail, dropping the lifting device to the ground and possibly injuring personnel working below.

Caution must be used when lowering the boom, extending the boom or hoisting up. Let out load line(s) simultaneously to prevent two-blocking the boom tip(s) and the hook block, etc. The closer the load is carried to the boom nose the more important it becomes to simultaneously let out wire rope as the boom is lowered. Keep load handling devices a minimum of 42 in (107 cm) below the boom nose at all times.

Two-blocking can be prevented. Operator awareness of the hazards of two-blocking is the most important factor in preventing this condition. An Anti-Two-Block System is intended to assist the operator in preventing dangerous two-


block conditions. It is not a replacement for operator awareness and competence.

Never interfere with the proper functioning of operational aids or warning devices.

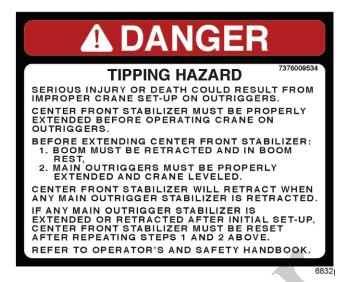
Work Area Definition System (WADS) (If Equipped)

If your crane is equipped with a WADS, you must read and understand the manufacturer's Operator's Manual before operating the system. Become familiar with all proper operating procedures and with the identification of symbol usage.

The work area definition system is intended as an aid to the operator. It is not a substitute for safe crane operating practices, experience and good operator judgements.

7340

CRANE STABILITY/STRUCTURAL STRENGTH


To avoid death or serious injury, ensure that the crane is on a firm surface with load and crane's configuration within capacity as shown on the crane's Load Chart and notes.

Ensure all pins and floats are properly installed and outrigger beams are properly extended before lifting on outriggers. On models equipped with outriggers that can be pinned at the mid-extend position (vertical stripe, if applicable), the outriggers must also be pinned when operating from the midextend position.

Use adequate cribbing under outrigger floats to distribute weight over a greater area. Check frequently for settling.

National Crane

Read and follow the following safety decal for cranes with center front stabilizers.

Carefully follow the procedures in this Operator's Manual when extending or retracting the outriggers. Death or serious injury could result from improper crane setup on outriggers.

The operator must select the proper *Load Chart* and Rated Capacity Limiter (RCL) System program for the outrigger position selected.

Before swinging the superstructure over the side when the outriggers are retracted, check the *Load Chart* for backwards stability.

Long cantilever booms can create a tipping condition when in an extended and lowered position. Retract the boom proportionally with reference to the capacity of the applicable *Load Chart*.

Check crane stability before lifting loads. Ensure the outriggers (or tires if lifting on rubber) are firmly positioned on solid surfaces. Ensure the crane is level, brakes are set, and the load is properly rigged and attached to the hook. Check the *Load Chart* against the weight of the load. Lift the load slightly off the ground and recheck the stability before proceeding with the lift. Determine the weight of the load before you attempt the lift.

Unless lifting within On Rubber capacities, outrigger beams and jack cylinders (plus center front stabilizer, if equipped) must be properly extended and set to provide precise leveling of the crane. Tires must be clear of the ground before lifting on outriggers.

A DANGER

DEATH OR SERIOUS INJURY COULD RESULT FROM IMPROPER CRANE SET-UP ON OUTRIGGERS

FAILURE TO FOLLOW THESE INSTRUCTIONS CAN RESULT IN THE CRANE OVERTURNING

- BE SURE OUTRIGGERS ARE PROPERLY EXTENDED AND SET AND CRANE IS LEVEL FOR OPERATION ON OUTRIGGERS.
- ALL FOUR OUTRIGGER BEAMS MUST BE EQUALLY EXTENDED TO THE APPROPRIATE VERTICAL STRIPE BEFORE BEGINNING OPERATION.
- ALL FOUR OUTRIGGER BEAM LOCK PINS MUST BE ENGAGED BEFORE OPERATING FROM THE MID-EXTEND POSITION.
- OPERATOR MUST SELECT PROPER LOAD CHART AND LMI PROGRAM FOR THE OUTRIGGER POSITION SELECTED.

KEEP THE BOOM SHORT. Swinging loads with a long line can create an unstable condition and possible structural failure of the boom.

Load Charts

Load Charts represent the absolute maximum allowable loads, which are based on either tipping or structural limitations of the crane under specific conditions. Knowing the precise load radius, boom length, and boom angle should be a part of your routine planning and operation. Actual loads, including necessary allowances, should be kept below the capacity shown on the applicable Load Chart.

Load Chart capacities are based on freely suspended loads.

You must use the appropriate *Load Chart* when determining the capability of the crane in the configuration required to perform the lift.

Maximum lifting capacity is available at the shortest radius, minimum boom length, and highest boom angle.

Do not remove the Load Charts from the crane.

Work Site

Prior to any operation, you must inspect the **entire** work site, including ground conditions, where the crane will travel and operate. Be sure that the surfaces will support a load greater than the crane's weight and maximum capacity.

Be aware of all conditions that could adversely affect the stability of the crane.

Wind Forces

Wind can have a significant affect on loads that may be lifted by a crane. Wind forces act differently on a crane depending

upon the direction from which the wind is blowing (e.g., wind on the rear of the boom can result in decreased forward stability, wind on the underside of the boom can result in decreased backward stability, wind on the side of the boom can result in structural damages, etc.). To assist you in determining prevailing wind conditions, refer to Table 2-1.

Wind forces can exert extreme dynamic loads. Manitowoc recommends that a lift not be made if the wind can cause

a loss of control in handling the load. Manitowoc recommends that, if the wind speed (velocity) is between 32 km/h (20 mph) to 48 km/h (30 mph), the load capacities shall be reduced to account for the size and shape of the load and the wind direction in relation to the machine for all boom and boom extension lengths. Further, operation of the crane in wind velocities over 48 km/h (30 mph) is not recommended.

Table 2-1

Wind Force		Wind Valority	Visible Indicator
Beauford Scale	Designation	Wind Velocity km/h (mph)	Visible Indicator Effects of wind as observed on land
Zero (0)	Calm	less than 1 (<1)	No wind; smoke rises vertically
1	Light Air	1-5 (1-3)	Wind direction seen by smoke but not by wind vanes
2	Light Breeze	6-11 (4-7)	Wind felt on face; leaves rustle; wind vane moves slightly
3	Gentle Breeze	12-19 (8-12)	Leaves/small twigs in constant motion: wind extends flag
4	Moderate Breeze	20-29 (13-18)	Raises dust & loose paper; moves small branches
Reduce crane load ratings and operating parameters at 32 km/h (20 mph)			
5	Fresh Breeze	29-38 (19-24)	Small trees in leaf begin to sway; on ponds, crested wavelets form
6	Strong Breeze	39-49 (25-31)	Large branches in motion; telephone wires whistle; umbrellas used with difficulty
Cease all craning operations at 48 km/h (30 mph); lower & retract boom			
7	Moderate Gale	50-61 (32-38)	Whole trees in motion; walking against wind is inconvenient

Lifting Operations

Before lifting, position the crane on a firm surface, properly extend and set the outriggers, and level the crane. Depending on the nature of the supporting surface, adequate cribbing may be required to obtain a larger bearing surface.

The crane is equipped with a bubble level that should be used to determine whether the crane is level. The load line can also be used to estimate the levelness of the crane by checking to be sure it is in-line with the center of the boom at all points on the swing circle.

If the boom extension, or auxiliary boom nose is to be used, ensure the electrical cable and the weight for the Anti-Two-Block Switch are properly installed and the Rated Capacity Limiter (RCL) is programmed for the crane configuration. Refer to the RCL operator's manual supplied with the crane.

Verify the crane's capacity by checking the *Load Chart* against the weight of the load. Then, lift the load slightly at first to ensure stability before proceeding with the lift.

Be sure the load is properly rigged and attached. Always determine the weight of the load before you attempt to lift it

and remember that all rigging (slings, etc.) and lifting devices (hook block, boom extension, etc.) must be considered part of the load.

Measure the load radius before making a lift and stay within approved lifting areas based on the range diagrams and working area diagrams on the crane's *Load Chart*.

Always keep the load as near to the crane and as close to the ground as possible.

Do not overload the crane by exceeding the capacities shown on the appropriate *Load Chart*. Death or serious injury could result from the crane tipping over or failing structurally from overload.

The crane can tip over or fail structurally if:

- The load and crane's configuration is not within the capacity as shown on the applicable Load Chart and notes.
- The ground is soft and/or the surface conditions are poor.
- Outriggers are not properly extended and set. On models equipped with outriggers that can be pinned at

the mid-extend position, the outriggers must also be pinned when operating from the mid-extend position.

- Cribbing under the outrigger pads is inadequate.
- The crane is improperly operated.

Do not rely on the crane's tipping to determine your lifting capacity.

Be sure the hoist line is vertical before lifting. Do not subject the crane to side loading. A side load can tip the crane or cause it to fail structurally.

Load Chart capacities are based on freely suspended loads. Do not pull posts, pilings, or submerged articles. Be sure the load is not frozen or otherwise attached to the ground before lifting.

If you should encounter a tipping condition, immediately lower the load with the hoist line and retract or elevate the boom to decrease the load radius. Never lower or extend the boom; this will aggravate the condition.

Use tag lines whenever possible to help control the movement of the load.

When lifting loads, the crane will lean toward the boom and the load will swing out, increasing the load radius. Ensure the crane's capacity is not exceeded when this occurs.

Do not strike any obstruction with the boom. If the boom should accidentally contact an object, stop immediately. Inspect the boom. Remove the crane from service if the boom is damaged.

Never push or pull with the crane boom.

Avoid sudden starts and stops when moving the load. The inertia and an increased load radius could tip the crane over or cause it to fail structurally.

Use only one hoist at a time when lifting loads.

Always use enough parts-of-line to accommodate the load to be lifted. Lifting with too few parts-of-line can result in failure of the wire rope.

Counterweight

On cranes equipped with removable counterweights, ensure the appropriate counterweight sections are properly installed for the lift being considered.

Do not add material to the counterweight to increase capacity. United States Federal law prohibits modification or additions which affect the capacity or safe operation of the equipment without the manufacturer's written approval. [29CFR 1926.1434]

Outrigger Lift Off

Regarding "lifting" of an outrigger pad during craning activities, be advised that the rated loads for these cranes,

as indicated on the crane's *Load Chart*, do not exceed 85% of the tipping load on outriggers as determined by SAE J765 OCT80 "Cranes Stability Test Code." An outrigger pad may lift off the ground during operation of the crane within the capacity limits of the *Load Chart*, yet the crane will not have reached instability. The "balance point" for stability testing according to SAE and Manitowoc criteria is a condition of loading wherein the load moment acting to overturn the crane is equal to the maximum moment of the crane available to resist overturning. This balance point or point of instability for a crane does not depend on "lifting" of an outrigger but rather on comparison of the "opposing" load moments.

The occurrence of an outrigger lifting from the ground is often attributed to the natural flex in the crane's frame. This may happen when lifting a load in certain configurations within the capacity limits of the *Load Chart* and is not necessarily an indication of an unstable condition.

Provided the crane is properly set up, the crane is in good working condition, that all operator's aids are properly programmed, that the qualified crane operator adheres to the instructions found in the applicable *Load Chart*, *Operator's Manual* and decals on the crane, the crane should not be unstable.

Multiple Crane Lifts

Multiple crane lifts are not recommended.

Any lift that requires more than one crane must be precisely planned and coordinated by a designated person. If it is necessary to perform a multi-crane lift, the operator shall be responsible for assuring that the following minimum safety precautions are taken:

- Secure the services of a designated person to direct the operation.
- Use one qualified signal person.
- Coordinate lifting plans with the operators, designated person, and signal person prior to beginning the lift.
- Maintain communication between all parties throughout the entire operation. If possible, provide approved radio equipment for voice communication between all parties engaged in the lift.
- Use outriggers on cranes so equipped.
- Calculate the amount of weight to be lifted by each crane and attach slings at the correct points for proper weight distribution.
- Ensure the load lines are directly over the attach points to avoid side loading and transfer of loading from one crane to the other.
- Do not travel. Lift only from a stationary position.

ELECTROCUTION HAZARD

Thoroughly read, understand, and abide by all applicable federal, state, and local regulations regarding operation of cranes near electric power lines or equipment.

United States federal law prohibits the use of cranes closer than 6 m (20 ft) to power sources up to 350 kV and greater distances for higher voltages unless the line's voltage is known [29CFR1910.180 and 29CFR1926.1400].

To avoid death or serious injury, Manitowoc recommends that all parts of crane, boom, and load be kept at least 6 m (20 ft) away from all electrical power lines and equipment less than 350 kV.

NOTE: For detailed guidelines on operating near power lines, refer to the current edition of OSHA 29CFR1926.1400 and ASME B30.5 American National Standard.

Electrocution Hazard!

Manitowoc cranes are not equipped with all features required to operate within OSHA 29CFR1926.1408, Table A clearances when the power lines are energized.

If operation within 3 meters (10 feet) of any power lines cannot be avoided, the power utility **must** be notified and the power lines **must** be de-energized and grounded **before** performing any work.

If contact is ever accidentally made with a power line and any part of this crane, its rigging or load, **never** touch the crane or even approach or come near the crane.

Electrocution **can occur** even without direct contact with the crane.

A DANGER

ELECTROCUTION HAZARD TO AVOID DEATH OR SERIOUS INJURY

Keep ALL parts of the crane, rigging and load at least 20 feet (6 meters) away from any energized power line. You MUST follow the OSHA requirements set forth in 29CFR 1926.1407 through 1926.1411.

This crane is not designed or equipped for use within 10 feet (3 meters) of energized power lines [Refer to 29CFR1926.1410 Table A]. If operation within 10 feet (3 meters) of any power lines cannot be avoided, the power utility MUST be notified and the power lines MUST be de-energized and grounded BEFORE performing any work.

If contact is ever accidentally made with a power line and any part of this crane, its rigging or load, NEVER touch the crane or even approach or come near the crane.

Electrocution CAN OCCUR even without direct contact with the crane.

80037260

Crane operation is dangerous when close to an energized electrical power source. Exercise extreme caution and prudent judgement. Operate slowly and cautiously when in the vicinity of power lines.

Before operating this crane in the vicinity of electrical power lines or equipment, notify the power utility company. Obtain positive and absolute assurance that the power has been turned off.

This crane is **not insulated**. Always consider all parts of the load and the crane, including the wire rope, hoist cable, pendant cables, and tag lines, as conductors. You, the operator, are responsible for alerting all personnel of

dangers associated with electrical power lines and equipment. Do not allow unnecessary personnel in the vicinity of the crane while operating. Permit no one to lean against or touch the crane. Permit no one, including riggers and load handlers, to hold the load, load lines, tag lines, or rigging gear.

If the load, wire rope, boom, or any portion of the crane contacts or comes too close to an electrical power source, everyone in, on, and around the crane can be seriously injured or killed.

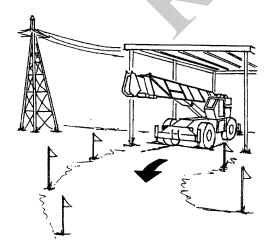
Most overhead power lines **are not** insulated. Treat all overhead power lines as being energized unless you have

reliable information to the contrary from the utility company or owner.

The rules in this *Operator's Manual* must be followed at all times, even if the electrical power lines or equipment have been de-energized.

The safest way to avoid electrocution is to stay away from electrical power lines and electrical power sources.

It is not always necessary to contact a power line or power source to become electrocuted. Electricity, depending on magnitude, can arc or jump to any part of the load, load line, or crane boom if it comes too close to an electrical power source. Low voltages can also be dangerous.


Set-Up and Operation

During crane use, assume that every line is energized ("hot" or "live") and take the necessary precautions.

Set up the crane in a position such that the load, boom, or any part of the crane and its attachments cannot be moved to within 6 m (20 ft) of electrical power lines or equipment. This includes the crane boom (fully extended to maximum height, radius, and length) and all attachments (boom extensions, rigging, loads, etc.). Overhead lines tend to blow in the wind so allow for lines' movement when determining safe operating distance.

A suitable barricade should be erected to physically restrain the crane and all attachments (including the load) from entering into an unsafe distance from electrical power lines or equipment.

Plan ahead and always plan a safe route before traveling under power lines. Rider poles should be erected on each side of a crossing to assure sufficient clearance is maintained.

United States OSHA regulations require a flagman when operating in close proximity to energized power lines.

Appoint a reliable and qualified signal person, equipped with a loud signal whistle or horn and voice communication

equipment, to warn the operator when any part of the crane or load moves near a power source. This person should have no other duties while the crane is working.

Tag lines should always be made of non-conductive materials. Any tag line that is wet or dirty can conduct electricity.

Do not store materials under power lines or close to electrical power sources.

Electrocution Hazard Devices

The use of insulated links, insulated boom cages/guards, proximity warning devices, or mechanical limit stops does not assure that electrical contact will not occur. Even if codes or regulations require the use of such devices, failure to follow the rules listed here may result in serious injury or death. You should be aware that such devices have limitations and you should follow the rules and precautions outlined in this manual at all times even if the crane is equipped with these devices.

Insulating links installed into the load line afford limited protection from electrocution hazards. Links are limited in their lifting abilities, insulating properties, and other properties that affect their performance. Moisture, dust, dirt, oils, and other contaminants can cause a link to conduct electricity. Due to their capacity ratings, some links are not effective for large cranes and/or high voltages/currents.

The only protection that may be afforded by an insulated link is below the link (electrically downstream), provided the link has been kept clean, free of contamination, has not been scratched or damaged, and is periodically tested (just before use) for its dielectric integrity.

Boom cages and boom guards afford limited protection from electrocution hazards. They are designed to cover only the boom nose and a small portion of the boom. Performance of boom cages and boom guards is limited by their physical size, insulating characteristics, and operating environment (e.g. dust, dirt, moisture, etc.). The insulating characteristics of these devices can be compromised if not kept clean, free of contamination, and undamaged.

Proximity sensing and warning devices are available in different types. Some use boom nose (localized) sensors and others use full boom length sensors. No warning may be given for components, cables, loads, and other attachments located outside of the sensing area. Much reliance is placed upon you, the operator, in selecting and properly setting the sensitivity of these devices.

Never rely solely on a device to protect you and your fellow workers from danger.

Some variables you must know and understand are:

 Proximity devices are advertised to detect the existence of electricity and not its quantity or magnitude.

- Some proximity devices may detect only alternating current (AC) and not direct current (DC).
- Some proximity devices detect radio frequency (RF) energy and others do not.
- Most proximity devices simply provide a signal (audible, visual, or both) for the operator; this signal must not be ignored.
- Sometimes the sensing portion of the proximity devices becomes confused by complex or differing arrays of power lines and power sources.

Do not depend on grounding. Grounding of a crane affords little or no protection from electrical hazards. The effectiveness of grounding is limited by the size of the conductor (wire) used, the condition of the ground, the magnitude of the voltage and current present, and numerous other factors.

Electrical Contact

If the crane should come in contact with an energized power source, you must:

- 1. Stay in the crane cab. Don't panic.
- 2. Immediately warn personnel in the vicinity to stay away.
- Attempt to move the crane away from the contacted power source using the crane's controls which are likely to remain functional.
- 4. Stay in the crane until the power company has been contacted and the power source has been de-energized. No one must attempt to come close to the crane or load until the power has been turned off.

Only as a last resort should an operator attempt to leave the crane upon contacting a power source. If it is absolutely necessary to leave the operator's station, **jump completely clear of the crane. Do not step off.** Hop away with both feet together. **Do not** walk or run.

Following any contact with an energized electrical source, the Manitowoc distributor must be immediately advised of the incident and consulted on necessary inspections and repairs. Thoroughly inspect the wire rope and all points of contact on the crane. Should the distributor not be immediately available, contact Manitowoc Crane Care. The crane must not be returned to service until it is thoroughly inspected for any evidence of damage and all damaged parts are repaired or replaced as authorized by your Manitowoc distributor or Manitowoc Crane Care.

Special Operating Conditions and Equipment

Never operate the crane during an electrical thunderstorm.

When operating near transmitter/communication towers where an electrical charge can be induced into the crane or load:

- The transmitter shall be deenergized OR,
- Tests shall be made to determine if an electrical charge will be induced into the crane or load.
- The crane must be provided an electrical ground.
- If taglines are used, they must be non-conductive.
- Every precaution must be taken to dissipate induced voltages. Consult a qualified RF (radio frequency) Consultant. Also refer to local, state, and federal codes and regulations.

When operating cranes equipped with electromagnets, you must take additional precautions. Permit no one to touch the magnet or load. Alert personnel by sounding a warning signal when moving a load. Do not allow the cover of the electromagnet power supply to be open during operation or at any time the electrical system is activated. Shut down the crane completely and open the magnet controls switch prior to connecting or disconnecting magnet leads. Use only a non-conductive device when positioning a load. Lower the magnet to the stowing area and shut off power before leaving the operator's cab (if equipped) or operator's station.

PERSONNEL HANDLING

The American Society of Mechanical Engineers issued a new American National Standard entitled, *Personnel Lifting Systems*, *ASME B30.23-2005*. This standard provides,

Lifting and lowering of personnel using ASME B30 Standard hoisting equipment shall be undertaken only in circumstances when it is not possible to accomplish the task by less hazardous means. Unless all of the applicable requirements of this volume are met, the lifting or lowering of personnel using ASME B30 Standard equipment is prohibited.

This new standard is consistent with the U.S. Department of Labor, Occupational Safety and Health Administration (OSHA) regulations for Construction that state, in 29CFRI926.1431:

General requirements. The use of a crane or derrick to hoist employees on a personnel platform is prohibited, except when the erection, use, and dismantling of conventional means of reaching the worksite, such as a personnel hoist, ladder, stairway, aerial lift, elevating work platform or scaffold, would be more hazardous or is not possible because of structural design or worksite conditions.

Additional requirements for crane operations are stated in ASME B30.5, Mobile And Locomotive Cranes, and in OSHA regulations 29CFRI910.180 for General Industry and 29CFRI926.1431 for Construction.

Use of a Manitowoc crane to handle personnel is acceptable provided:

- The requirements of the applicable national, state and local regulations and safety codes are met.
- A determination has been made that use of a crane to handle personnel is the least hazardous means to perform the work.
- The crane operator shall be qualified to operate the specific type of hoisting equipment used in the personnel lift.
- The crane operator must remain at the crane controls at all times when personnel are off the ground.
- The crane operator and occupants have been instructed in the recognized hazards of personnel platform lifts.
- The crane is in proper working order.
- The crane must be equipped with a boom angle indicator that is visible to the crane operator.
- The crane's Load Chart is affixed at the operator's station and readily accessible to the operator. The total weight of the loaded personnel platform and related rigging shall not exceed 50 percent of the rated capacity for the radius and configuration of the crane.
- The crane is level within one percent of level grade and located on a firm footing. Cranes with outriggers shall have them all deployed following manufacturer's specifications.
- The crane's Operator's Manual and other operating manuals are at the operator's station and readily accessible to the operator.
- The platform meets the requirements as prescribed by applicable standards and regulations.
- · For wire rope suspended platforms:
 - The crane is equipped with a hook that can be closed and locked, eliminating the throat opening.
 - The crane is equipped with a functional Anti-Two-Block Device.
 - The platform is properly attached and secured to the load hook.
- · For boom mounted platforms:
 - On cranes equipped with a boom mounted personnel platform, use only a platform approved by Manitowoc.
 - The platform is properly attached and secure.

To avoid death or serious injury:

 NEVER use this crane for bungee jumping or any form of amusement or sport.

- NEVER handle personnel on the loadline unless the requirements of applicable national, state and local regulations and safety codes are met.
- NEVER permit anyone to ride loads, hooks, slings or other rigging for any reason.
- NEVER get on or off a moving crane.
- NEVER allow anyone other than the operator to be on this crane while the machine is operating or traveling.

The following standards and regulations regarding personnel handling are available by mail at the following addresses:

- ASME (formerly ANSI) B30 Series American National Safety Standards For Cableways, Cranes, Derricks, Hoists, Hooks, Jacks, and Slings; ASME B30.5, Mobile And Locomotive Cranes, and ASME B30.23, Personnel Lifting Systems, are available by mail from the ASME, 22 Law Drive, Fairfield, New Jersey, 0700-2900
- US DOL/OSHA Rules and Regulations are available by mail from the Superintendent of Documents, PO Box 371954, Pittsburgh, PA, 15250-7954.

ENVIRONMENTAL PROTECTION

Dispose of waste properly! Improperly disposing of waste can threaten the environment.

Potentially harmful waste used in Manitowoc cranes includes — but is not limited to — oil, fuel, grease, coolant, air conditioning refrigerant, filters, batteries, and cloths which have come into contact with these environmentally harmful substances.

Handle and dispose of waste according to local, state, and federal environmental regulations.

When filling and draining crane components, observe the following:

- Do not pour waste fluids onto the ground, down any drain, or into any source of water.
- Always drain waste fluids into leak proof containers that are clearly marked with what they contain.
- Always fill or add fluids with a funnel or a filling pump.
- Immediately clean up any spills.

MAINTENANCE

The crane must be inspected prior to use on each work shift. The owner, user, and operator must ensure that routine maintenance and lubrication are being dutifully performed. **Never** operate a damaged or poorly maintained crane.

Manitowoc continues to recommend that cranes be properly maintained, regularly inspected and repaired as necessary. Manitowoc reminds crane owners to ensure that all safety decals are in place and legible. Manitowoc continues to urge

crane owners to upgrade their cranes with rated capacity limiter and control lever lockout systems for all lifting operations.

Shut down the crane while making repairs or adjustments.

Always perform a function check after repairs have been made to ensure proper operation. Load tests should be performed when structural or lifting members are involved.

Follow all applicable safety precautions in this manual when performing crane maintenance as well as crane operations.

Keep the crane free of mud, dirt, and grease at all times. Dirty equipment introduces hazards, wears-out faster, and makes proper maintenance difficult. Cleaning solutions used should be non-flammable, non-toxic and appropriate for the job.

Routine maintenance and inspection of this crane must be performed by a qualified person(s) according to the recommendations in the *Manitowoc Crane Care Maintenance and Inspection Manual*. Any questions regarding procedures and specifications should be directed to your Manitowoc distributor.

Service and Repairs

WARNING

Fall Hazard!

Working at elevated heights without using proper fall protection can result in severe injury or death.

Always use proper fall protection as required by local, state or federal regulations.

Service and repairs to the crane must only be performed by a qualified person. All service and repairs must be performed in accordance with manufacturer's recommendations, this manual, and the service manual for this machine. If there is any question regarding maintenance procedures or specifications, contact your Manitowoc distributor for assistance.

Qualified person is defined as one who by reason of knowledge, training and experience is thoroughly familiar with the crane's operation and required maintenance as well as the hazards involved in performing these tasks.

Training and qualification of maintenance and repair personnel are crane owner's responsibility.

Any modification, alteration, or change to a crane which affects its original design and is not authorized and approved by Manitowoc is **strictly prohibited**. All replacement parts must be Manitowoc approved. Such action invalidates all warranties and makes the owner/user liable for any resultant accidents.

Hydraulic Fluid:

- Do not use your hand or any part of your body to check for hydraulic fluid leaks when the engine is running or the hydraulic system is under pressure. Fluid in the hydraulic system can be under enough pressure that it will penetrate the skin, causing serious injury or death. Use a piece of cardboard, or piece of paper, to search for leaks. Wear gloves to protect your hands from spraying fluid.
- If any hydraulic fluid is injected into the skin, obtain medical attention immediately or gangrene may result.
- Do not attempt to repair or tighten any hydraulic hose or fitting while the engine is running, or when the hydraulic system is under pressure.
- Never disconnect any hydraulic lines unless the boom is fully lowered, the engine is shut off, and the hydraulic pressure is relieved. To relieve hydraulic pressure, stop the engine and move the hydraulic controls in both directions several times.
- Hot hydraulic fluid will cause severe burns. Wait for the fluid to cool before disconnecting any hydraulic lines.
- Hydraulic fluid can cause permanent eye injury. Wear appropriate eye protection.

Moving Parts:

- Do not place limbs near moving parts. Amputation of a body part may result. Turn off the engine and wait until the fan and belts stop moving before servicing crane.
- Pinch points, which result from relative motion between mechanical parts, are areas of the machine that can cause personal injury or death. Do not place limbs or your body in contact with pinch points either on or around the machine. Care must be taken to prevent motion between pinch points when performing maintenance and to avoid such areas when movement is possible.
- Do not allow persons to stand near extending or lowering outriggers. Foot crushing could occur

Before performing any maintenance, service or repairs on the crane:

- The boom should be fully retracted and lowered and the load placed on the ground.
- Do not get under a raised boom unless the boom is blocked up safely. Always block up the boom before doing any servicing that requires the boom to be raised.
- Stop the engine and disconnect the battery.
- Controls should be properly tagged. Never operate the crane if it is tagged-out nor attempt to do so until it is restored to proper operating condition and all tags have been removed by the person(s) who installed them.

After maintenance or repairs:

- Replace all guards and covers that have been removed.
- Remove all tags, connect the battery, and perform a function check of all operating controls.
- Consult with Manitowoc Crane Care to determine if load testing is required after a structural repair is performed.

Lubrication

The crane must be lubricated according to the manufacturer's recommendations for lubrication points, time intervals, and types. Lubricate at more frequent intervals when working under severe conditions.

Exercise care when servicing the hydraulic system of the crane, as pressurized hydraulic oil can cause serious injury. The following precautions must be taken when servicing the hydraulic system:

- Follow the manufacturer's recommendations when adding oil to the system. Mixing the wrong fluids could destroy seals, causing component failure.
- Be certain all lines, components, and fittings are tight before resuming operation.

Tires

WARNING

Possible equipment damage and/or personal injury!

Driving the crane with a tire and split-rim assembly under inflated at 80% or less of its recommended pressure can cause the wheel and/or tire to fail. Per *OSHA Standard* 1910.177(f)(2), when a tire has been driven under inflated at 80% or less of its recommended pressure, it must first be completely deflated, removed from the axle, disassembled, and inspected before re-inflation.

Inspect the tires for nicks, cuts, embedded material, and abnormal wear.

Ensure all lug nuts are properly torqued.

Ensure pneumatic tires are inflated to the proper pressure (refer to the *Load Chart*). When inflating tires, use a tire gauge, clip-on inflator, and extension hose which will permit standing clear of the tire while inflating.

Wire Rope

Use **only** the wire rope specified by Manitowoc as indicated on the crane's *Load Chart*. Substitution of an alternate wire rope may require the use of a different permissible line pull and, therefore, require different reeving.

NOTE: Wire rope may be purchased by contacting Manitowoc Crane Care.

Always make daily inspections of the wire rope, keeping in mind that all wire rope will eventually deteriorate to a point where it is no longer usable. Refuse to work with worn or damaged wire rope. Wire rope shall be taken out of service when any of the following conditions exist:

- For rotation-resistant running ropes: more than two (2) broken wires in a length of rope equal to six (6) times the rope diameter, or more than four (4) broken wires in a length of rope equal to thirty (30) times the rope diameter.
- For running ropes other than rotation resistant: six (6) broken wires in one rope lay or three (3) broken wires in one strand.
- One valley break where the wire fractures between strands in a running rope is cause for removal.
- Abrasion of the rope resulting in wear of the individual outside wires of 1/3 of the original wire diameter.
- Any kinking, bird caging, crushing, corrosion, or other damage resulting in distortion of the rope structure.
- Rope that has been in contact with a live power line or has been used as a ground in an electric circuit (eg. welding) may have wires that are fused or annealed and must be removed from service.
- In standing ropes, more than three (3) breaks in one rope lay in sections beyond the end connection or more than two (2) broken wires at an end connection.
- Core deterioration, usually observed as a rapid reduction in rope diameter, is cause for immediate removal of the rope.

The following is a brief outline of the basic information required to safely use wire rope.

- Wire ropes wear out. The strength of a wire rope begins to decrease when the rope is put to use and continues to decrease with each use. Wire rope will fail if worn-out, overloaded, misused, damaged or improperly maintained.
- The nominal strength, sometimes called catalog strength, of a wire rope applies only to a new, unused rope.
- The nominal strength of a wire rope should be considered the straight line pull which will actually break a new unused rope. The nominal strength of a wire rope should never be used as its working load.
- Each type of fitting attached to a wire rope has a specific efficiency rating which can reduce the working load of the wire rope assembly or rope system.

- Never overload a wire rope. This means never use the wire rope where the load applied to it is greater than the working load determined by the rope manufacturer.
- Never "shock load" a wire rope. A sudden application of force or load can cause both visible external and internal damage. There is no practical way to estimate the force applied by shock loading a rope. The sudden release of a load can also damage a wire rope.
- Lubricant is applied to the wires and strands of a wire rope when it is manufactured. The lubricant is depleted when the rope is in service and should be replaced periodically. Refer to the Service Manual for more information.
- In the U.S.A., regular inspections of the wire rope and keeping of permanent records signed by a qualified person are required by OSHA for almost every wire rope application. The purpose of the inspection is to determine whether or not a wire rope may continue to be safely used on the application. Inspection criteria, including number and location of broken wires, wear and elongation, have been established by OSHA, ANSI, ASME and similar organizations. See the Service Manual for inspection procedures.

When inspecting wire ropes and attachments, keep all parts of your body and clothing away from rotating hoist drums and all rotating sheaves. Never handle the wire rope with bare hands.

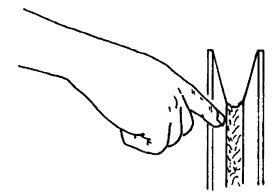
Some conditions that lead to problems in wire rope systems include:

- Sheaves that are too small, worn or corrugated cause damage to a wire rope.
- Broken wires mean a loss in strength.
- Kinks permanently damage a wire rope and must be avoided.
- Wire ropes are damaged by knots. Wire rope with knots must never be used.
- Environmental factors such as corrosive conditions and heat can damage a wire rope.
- Lack of lubrication can significantly shorten the useful life of a wire rope.
- Contact with electrical wires and resulting arcing will damage a wire rope.
- An inspection should include verification that none of the specified removal criteria for this usage are met by checking for such things as:
 - Surface wear; nominal and unusual.
 - Broken wires; number and location.
 - Reduction in diameter.

- Rope stretch (elongation).
- Integrity of end attachments.
- Evidence of abuse or contact with another object.
- Heat damage.
- Corrosion.

NOTE: A more detailed wire rope inspection procedure is given in the *Service Manual*.

 When a wire rope has been removed from service because it is no longer suitable for use, it must not be reused on another application.


When installing a new rope:

- Keep all parts of your body and clothing away from rotating hoist drums and all rotating sheaves.
- Never handle the wire rope with bare hands.
- Follow proper instructions for removing rope from a reel.
- Apply back tension to the storage/payoff reel of the new rope to insure tight, even spooling onto the hoist drum.
- Operate the new rope first through several cycles at light load and then through several cycles at intermediate load to allow the rope to adjust to operating conditions.

When using a wedge socket:

- Always inspect socket, wedge, and pin for correct size and condition.
- Do not use parts that are damaged, cracked, or modified.
- Assemble the wedge socket with live end of rope aligned with the centerline of pin and assure proper length of tail (dead end) protrudes beyond the socket.

Sheaves

Inspect the boom nose and hook block sheaves for proper operation, excessive wear, and damage every 50 hours or

weekly. Inoperable, damaged and/or worn sheaves cause rapid deterioration of wire rope.

Ensure sheaves carrying ropes that can be momentarily unloaded are equipped with close fitting guards or other devices to guide the rope back into the groove when the load is reapplied. Ensure sheaves in the lower load block are equipped with close fitting guards that will prevent the ropes from becoming fouled when the block is lying on the ground with loose ropes.

To attain maximum wire rope life and minimize hook block rotation, it is recommended that even numbers of parts-of-line be used in multiple-part reeving whenever possible.

The use of nylon (polyamide) sheaves, as compared with metallic sheaves, may change the replacement criteria of rotation-resistant wire rope.

NOTE: The use of cast nylon (polyamide) sheaves will substantially increase the service life of wire rope. However, conventional rope retirement criteria based only upon visible wire breaks may prove inadequate in predicting rope failure. The user of cast nylon sheaves is therefore cautioned that a retirement criteria should be established based upon the user's experience and the demands of his application.

Batteries

Battery electrolyte must not be allowed to contact the skin or eyes. If this occurs, flush the contacted area with water and consult a doctor immediately.

When checking and maintaining batteries, exercise the following procedures and precautions:

- Wear safety glasses when servicing batteries.
- If equipped, disconnect battery with the battery disconnect switch before disconnecting the ground battery cable.
- Do not break a live circuit at the battery terminal.
 Disconnect the ground battery cable first when removing a battery and connect it last when installing a battery.
- Do not short across the battery posts to check charge.
 Short circuit, spark, or flame could cause battery explosion.
- Maintain battery electrolyte at the proper level. Check the electrolyte with a flashlight.
- If applicable to your crane, check battery test indicator on maintenance-free batteries.
- Check battery condition only with proper test equipment. Batteries shall not be charged except in an open, well-ventilated area that is free of flame, smoking, sparks, and fire.

Engine

Fuel the crane only with the engine turned off. Do not smoke while fueling the crane. Do not store flammable materials on the crane.

Be familiar with the location and use of the nearest fire extinguisher.

Be careful when checking the engine coolant level. The fluid may be hot and under pressure. Shut down the engine and allow the radiator time to cool before removing the radiator cap.

Shut down the engine and disconnect the battery before performing maintenance. If unable to do so for the task required, keep hands clear of the engine fan and other moving parts while performing maintenance.

Be careful of hot surfaces and hot fluids when performing maintenance on or around the engine.

Do not use ether to start the engine on cranes equipped with intake manifold grid heaters.

TRANSPORTING THE CRANE

Before transporting the crane, check the suitability of the proposed route with regard to the crane height, width, length, and weight.

Check load limits of bridges on the travel route and ensure they are greater than the combined weight of the crane and transporting vehicle.

When loading or unloading the crane on a trailer or railroad car, use a ramp capable of supporting the weight of the crane.

Ensure the crane is adequately secured to the transporting vehicle

Before transporting the crane on a road or highway, first check state and local restrictions and regulations.

When using hookblock tie downs, excessive loading can be applied by pulling the cable too tight, particularly when reeved with multiple part lines. When the cable is hooked into the hookblock tie down, the cable should be merely "snugged-up" with slack provided at the center line of sheave to anchor point. Care must be exercised anytime any crane function is being performed while the cable is hooked into the hookblock tie down. Do not draw cable taut.

TRAVEL OPERATION

Only the crane operator shall occupy the crane when traveling.

When traveling, the boom should be completely retracted and lowered to the travel position and the turntable pin swing lock should be engaged. If equipped with boom rest, lower the boom into the boom rest and engage the turntable lock.

Strictly adhere to the guidelines and restrictions in the *Load Chart* for pick and carry operations.

Traveling at high speeds, especially on rough ground, may create a bouncing affect that can result in loss of control. If bouncing occurs, reduce travel speed.

Death or serious injury could result from being crushed by revolving tires.

Stunt driving and horse-play are strictly prohibited. Never allow anyone to hitch a ride or get on or off a moving crane.

Follow the instructions in this manual when preparing the crane for travel.

If using a boom dolly/trailer, thoroughly read and understand all the steps and safety precautions in this manual for setup and travel.

When driving the crane, ensure the cab is level, if equipped with a tilting cab.

Secure the hook block and other items before moving the crane.

Watch clearances when traveling. Do not take a chance of running into overhead or side obstructions.

When moving in tight quarters, post a signal person to help guard against collisions or bumping structures.

Before traveling a crane, check suitability of proposed route with regard to crane height, width, and length.

Never back up without the aid of a signal person to verify the area behind the crane is clear of obstructions and/or personnel.

On cranes equipped with air-operated brakes, do not attempt to move the crane until brake system air pressure is at operating level.

Check load limit of bridges. Before traveling across bridges, ensure they will carry a load greater than the crane's weight.

If it is necessary to take the crane on a road or highway, check state and local restrictions and regulations.

Keep lights on, use traffic warning flags and signs, and use front and rear flag vehicles when necessary. Check state and local restrictions and regulations.

Always drive the crane carefully obeying speed limits and highway regulations.

Stay alert at the wheel.

If equipped, ensure that the hoist access platform hand rail and step are in the travel configuration.

Slopes:

- Pick and carry on level surfaces only.
- Refer to the *Operation Section* for more detailed information on traveling on slopes.
- Driving across a slope is dangerous, as unexpected changes in slope can cause tip over. Ascend or descend slopes slowly and with caution.
- When operating on a downhill slope, reduce travel speed and downshift to a low gear to permit compression braking by the engine and aid the application of the service brakes.

WORK PRACTICES

Personal Considerations

Always adjust the seat and lock it in position, and fasten the seat belt securely before you start the engine.

Do not wear loose clothing or jewelry that can get caught on controls or moving parts. Wear the protective clothing and personal safety gear issued or called for by the job conditions. Hard hat, safety shoes, ear protectors, reflective clothing, safety goggles, and heavy gloves may be required.

Crane Access

Fall Hazard!

Working at elevated heights without using proper fall protection can result in severe injury or death.

Always use proper fall protection as required by local, state or federal regulations.

You must take every precaution to ensure you do not slip and/or fall off the crane. Falling from any elevation could result in serious injury or death.

Never exit or enter the crane cab or deck by any other means than the access system(s) provided (i.e., steps and grab handles). Use the recommended hand-holds and steps to maintain a three-point contact when getting on or off the

If necessary, use a ladder or aerial work platform to access the boom nose.

Do not make modifications or additions to the crane's access system that have not been evaluated and approved by Manitowoc Crane Care.

Do not step on surfaces on the crane that are not approved or suitable for walking and working. All walking and working surfaces on the crane should be clean, dry, slip-resistant, and have adequate supporting capacity. Do not walk on a surface if slip-resistant material is missing or excessively worn.

Do not use the top of the boom as a walkway.

Do not step on the outrigger beams or outrigger pads (floats) to enter or exit the crane.

Use the hoist access platform (if equipped) when working in the hoist area.

Wear shoes with a highly slip-resistant sole material. Clean any mud or debris from shoes before entering the crane cab/ operator's station or climbing onto the crane superstructure. Excessive dirt and debris on the hand-holds, access steps, or walking/working surfaces could cause a slipping accident. A shoe that is not clean might slip off a control pedal during operation.

Do not allow ground personnel to store their personal belongings (clothing, lunch boxes, water coolers, and the like) on the crane. This practice will prevent ground personnel from being crushed or electrocuted when they attempt to access personal belongings stored on the crane.

Job Preparation

Before crane use:

- Barricade the entire area where the crane is working and keep all unnecessary personnel out of the work area.
- Ensure that the crane is properly equipped including access steps, covers, doors, guards, and controls.
- Conduct a visual inspection for cracked welds, damaged components, loose pins/bolts, and wire connections. Any item or component that is found to be loose or damaged (broken, chipped, cracked, worn-through, etc.) must be repaired or replaced. Inspect for evidence of improper maintenance (consult your Service Manual).
- Check for proper functioning of all controls and operator aids (e.g. RCL).
- Check all braking (e.g. wheel, hoist, and swing brakes) and holding devices before operation.

You must ensure that the outriggers and stabilizers are properly extended and set before performing any lifting operations. On models equipped with outriggers that can be pinned at the mid-extend position, the outriggers must also be pinned when operating from the mid-extend position.

Clear all personnel from the outrigger area before extending or retracting the outriggers. Carefully follow the procedures in this Operator's Manual when extending or retracting the outriggers. Death or serious injury could result from improper crane set up on outriggers.

Be familiar with surface conditions and the presence of overhead obstructions and power lines.

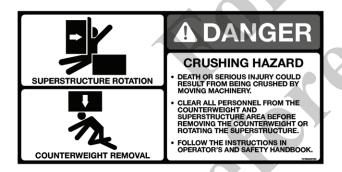
Working

Operator shall be responsible for all operations under his/her direct control. When safety of an operation is in doubt, operator shall stop the crane's functions in a controlled manner. Lift operations shall resume only after safety concerns have been addressed or the continuation of crane operations is directed by the lift supervisor.

Know the location and function of all machine controls.

Make sure all persons are away from the crane and the Travel Select Lever is in the "N" (Neutral) position with the parking brake engaged before starting the engine.

Sparks from the crane's electrical system and/or engine exhaust can cause an explosion. **Do not** operate this crane in an area with flammable dust or vapors, unless good ventilation has removed the hazard.


Carbon monoxide fumes from the engine exhaust can cause suffocation in an enclosed area. Good ventilation is very important when operating the crane.

Before actuating swing or any other crane function, sound the horn and verify that all personnel are clear of rotating and moving parts.

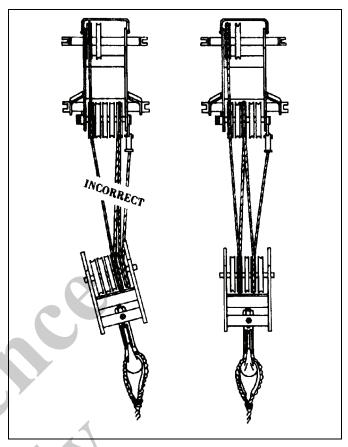
Never operate the crane when darkness, fog, or other visibility restrictions make operation unsafe. Never operate a crane in thunderstorms or high winds.

Always be aware of your working environment during operation of the crane. Avoid contacting any part of the crane with external objects.

Clear all personnel from the counterweight and superstructure area before removing the counterweight.

Keep unauthorized personnel clear of the working area during operation.

Only the crane operator shall occupy the crane when in operation.


You must always be aware of everything around the crane while lifting or traveling. If you are unable to clearly see in the direction of motion, you must post a look out or signal person before moving the crane or making a lift. Sound the horn to warn personnel

Operate the crane only from the operator's seat. Do not reach in a window or door to operate any controls.

Operate the crane slowly and cautiously, looking carefully in the direction of movement.

A good practice is to make a "dry run" without a load before making the first lift. Become familiar with all factors peculiar to the job site.

Ensure the wire rope is properly routed on the hook block and boom nose and that all rope guards are in place.

Lifting

Use enough parts of line for all lifts and check all lines, slings, and chains for correct attachment. To obtain maximum lifting capacities, the hook block must be set up with enough parts of line. Too few parts of line can result in failure of the wire rope or hoist. No less than three wraps of wire rope should remain on the hoist drum. When slings, ties, hooks, etc., are used, make certain they are correctly positioned and secured before raising or lowering the loads.

Be sure the rigging is adequate before lifting. Use tag lines when possible to position and restrain loads. Personnel using tag lines should be on the ground.

Be sure good rigging practices are being used. Refuse to use any poorly maintained or damaged equipment. Never wrap the hoist cable around a load.

If using a clam bucket, do not exceed 80% of the crane's capacity.

Make certain the boom tip is centered directly over the load before lifting.

Ensure that all slings, ties, and hooks are correctly placed and secured before raising or lowering the load.

Be sure the load is well secured and attached to the hook with rigging of proper size and in good condition.

Check the hoist brake by raising the load a few inches, stopping the hoist and holding the load. Be sure the hoist brake is working correctly before continuing the lift.

When lowering a load always slow down the load's descent before stopping the hoist. Do not attempt to change speeds on multiple-speed hoists while the hoist is in motion.

Watch the path of the boom and load when swinging. Avoid lowering or swinging the boom and load into ground personnel, equipment, or other objects.

Lift one load at a time. Do not lift two or more separately rigged loads at one time, even if the loads are within the crane's rated capacity.

Never leave the crane with a load suspended. Should it become necessary to leave the crane, lower the load to the ground and stop the engine before leaving the operator's station.

Remember, all rigging equipment must be considered as part of the load. Lifting capacities vary with working areas. If applicable, permissible working areas are listed in the *Load Chart*. When swinging from one working area to another, ensure *Load Chart* capacities are not exceeded. Know your crane!

Stop the hook block from swinging when unhooking a load.

Swinging rapidly can cause the load to swing out and increase the load radius. Swing the load slowly. Swing with caution and keep the load lines vertical.

Look before swinging your crane. Even though the original setup may have been checked, situations do change.

Never swing or lower the boom into the carrier cab (if applicable).

Never push or pull loads with the crane's boom; never drag a load.

Do not subject crane to side loading. A side load can tip the crane or cause it to fail structurally.

If the boom should contact an object, stop immediately and inspect the boom. Remove the crane from service if the boom is damaged.

When lifting a load the boom may deflect causing the load radius to increase—this condition is made worse when the boom is extended. Ensure weight of load is within crane's capacity on *Load Chart*.

Avoid sudden starts and stops when moving the load. The inertia and an increased load radius could tip the crane over or cause it to fail structurally.

Use tag lines (as appropriate) for positioning and restraining loads. Check the load slings before lifting.

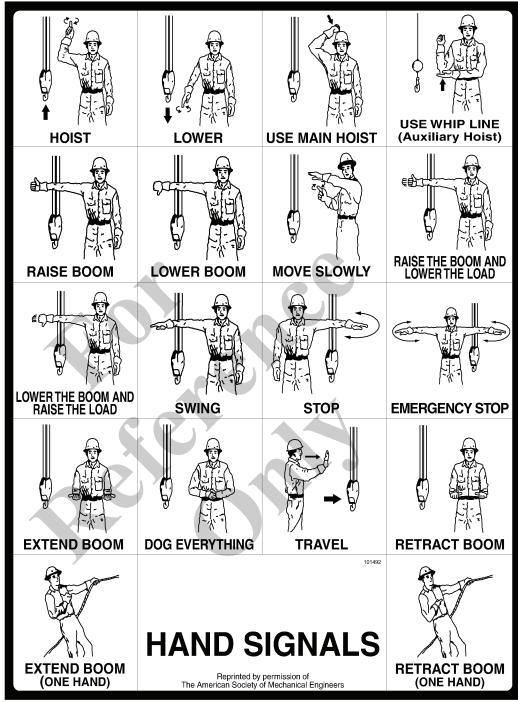
Be sure everyone is clear of the crane and work area before making any lifts.

Never swing over personnel, regardless of whether load is suspended from or attached to the boom.

Hand Signals

A single qualified signal person shall be used at all times when:

- Working in the vicinity of power lines.
- The crane operator cannot clearly see the load at all times.
- Moving the crane in an area or direction in which the operator cannot clearly see the path of travel.


At all times use standardized hand signals - previously agreed upon and completely understood by the operator and signal person.

If communication with the signal person is lost, crane movement must be stopped until communications are restored.

Keep your attention focused on the crane's operation. If for some reason you must look in another direction, stop all crane movement first.

Obey a signal to stop from anyone.

Reprinted from ASME B30.5-2014, by permission of The American Society of Mechanical Engineers. All Rights Reserved.

BOOM EXTENSION

To avoid death or serious injury, follow the procedures in this manual during erection, stowage, and use of the boom extension.

Install and secure all pins properly.

Control movement of boom extension at all times.

Do not remove right side boom nose pins unless boom extension is properly pinned and secured on front and rear stowage brackets.

DANGER

Boom Extension Hazard!

To avoid death or serious injury, follow procedures in *Load Chart*, safety, and operation manuals during erection, stowage and use of boom extension. Install and secure all pins properly and control boom extension movement at all times.

Do not remove all the pins from both front and rear stowage brackets unless the boom extension is pinned to the right side of the boom nose.

Properly inspect, maintain, and adjust boom extension and mounting.

When assembling and disassembling boom extension sections, use blocking to adequately support each section and to provide proper alignment.

Stay outside of boom extension sections and lattice work.

Watch for falling or flying pins when they are being removed.

PARKING AND SECURING

Tipping Hazard!

When parking the crane and leaving it unattended follow the instructions for the Controls and Operating Procedures of this manual.

Failure to comply with these instructions may cause death or serious injury

When parking on a grade, apply the parking brake and chock the wheels.

The Controls and Operating Procedures section of this manual provides instructions for parking and securing a crane when it is to be left unattended. These instructions are intended to allow the crane to be placed in the most stable and secure position. However, Manitowoc recognizes that

certain jobsite conditions may not permit the boom and boom extension of a crane to be fully lowered to the ground. When a qualified person at a jobsite determines that it is not practical to lower the boom to the ground, we recommend the following additional instructions be followed:

- The crane should be left in the smallest, most stable, valid operational configuration that the job site practically allows.
- The crane can not be left running, with a load on the hook, or in erection mode, or in wind conditions in excess of allowed values.
- The boom should be retracted as far as is practical, the crane configured in as stable a configuration as possible (boom angle, superstructure orientation, boom extension angle, etc.)
- In high winds the boom and boom extensions should be lowered, or secured. Changing weather conditions including but not limited to: wind, ice accumulation, precipitation, flooding, lightning, etc. should be considered when determining the location and configuration of a crane when it is to be left unattended.

SHUT-DOWN

Use the following steps when shutting down the crane:

- Engage the parking brake.
- Fully retract and lower the boom.
- Engage the swing lock pin or 360 degree swing lock.
- Place controls in neutral position.
- Shut down the engine and remove the ignition key.
- Chock the wheels, if not on outriggers.
- Lock the operator's cab (if applicable) and install vandal quards, if used.

COLD WEATHER OPERATION

Cold weather operation requires additional caution on the part of the operator.

Check operating procedures in this manual for cold weather starting.

Don't touch metal surfaces that could freeze you to them.

Clean the crane of all ice and snow.

Allow ample time for hydraulic oil to warm up.

In freezing weather, park the crane in an area where it cannot become frozen to the ground. The drive line can be damaged when attempting to free a frozen crane.

If applicable to your crane, frequently check all air tanks for water in freezing weather.

If applicable to your crane, always handle propane tanks according to the supplier's instructions.

Never store flammable materials on the crane.

If cold weather starting aids are provided on your crane, use them. The use of aerosol spray or other types of starting fluids containing ether/volatiles can cause explosions or fire.

TEMPERATURE EFFECTS ON HOOK BLOCKS

The following information applies to Gunnebo Johnston crane hook blocks:

"Never use a crane block in extreme temperatures...Sudden failure can occur.

Crane blocks shall not be heated above 180 degrees F. Craneblock Working Load Limit is valid between 180 degrees F and service temperature given on the identification tag with normal lifting precautions.

Additional lifting precautions are required below the service temperature given on the identification tag because cold temperature begins to affect the crane block material properties.

Lifting above 75% of the Working Load Limit (WLL), at temperatures between the service temperature given on the identification tag and -40 degrees F, must (be) done at a slow and steady rate to avoid stress spikes common in normal hoisting dynamics.

75% of the WLL must not be exceeded, when lifting in temperatures below -40 degrees F."

TEMPERATURE EFFECTS ON HYDRAULIC CYLINDERS

Hydraulic oil expands when heated and contracts when cooled. This is a natural phenomena that happens to all liquids. The coefficient of expansion for API Group 1 hydraulic oil is approximately 0.00043 cubic inches per cubic inch of volume for 1°F of temperature change. Thermal contraction will allow a cylinder to retract as the hydraulic fluid which is trapped in the cylinder cools.

The change in the length of a cylinder is proportional to the extended length of the cylinder and to the change in temperature of the oil in the cylinder. For example, a cylinder extended 25 ft in which the oil cools 60°F would retract

approximately 7 3/4 in (see Table 2-2). A cylinder extended 5 feet in which the oil cools 60°F would only retract approximately 1 1/2 in. The rate at which the oil cools depends on many factors and will be more noticeable with a larger difference in oil temperature verses the ambient temperature.

Thermal contraction coupled with improper lubrication or improper wear pad adjustments may, under certain conditions, cause a "stick-slip" condition in the boom. This "stick-slip" condition could result in the load not moving smoothly. Proper boom lubrication and wear pad adjustment is important to permit the boom sections to slide freely. Slow movement of the boom may be undetected by the operator unless a load is suspended for a long period of time. To minimize the effects of thermal contraction or "Stick-slip" it is recommended that the telescope control lever is activated periodically in the extend position to mitigate the effects of cooling oil.

If a load and the boom is allowed to remain stationary for a period of time and the ambient temperature is cooler than the trapped oil temperature, the trapped oil in the cylinders will cool. The load will lower as the telescope cylinder(s) retracts allowing the boom to come in. Also, the boom angle will decrease as the lift cylinder(s) retracts causing an increase in radius and a decrease in load height.

This situation will also occur in reverse. If a crane is set up in the morning with cool oil and the daytime ambient temperature heats the oil, the cylinders will extend in similar proportions.

Table 2-2 and Table 2-3 have been prepared to assist you in determining the approximate amount of retraction/extension that may be expected from a hydraulic cylinder as a result of change in the temperature of the hydraulic oil inside the cylinder. The chart is for dry rod cylinders. If the cylinder rod is filled with hydraulic oil, the contraction rate is somewhat greater.

NOTE:

Operators and service personnel must be aware that load movement, as a result of this phenomena, can be easily mistaken as leaking cylinder seals or faulty holding valves. If leaking seals or faulty holding valves are suspected to be the problem, refer to Service Bulletin dealing with testing telescope cylinders. (Service Bulletin 98-036 applies to TMS700 and Service Bulletin G06-005A applies to RT890 and RT9130.

Table 2-2: Boom Drift Chart (Cylinder length change in inches)

Coeff. =	0.00043	(in ³ /in ³ / °F)								
STROKE				Temper	ature Chai	nge (°F)				
(FT.)	10	20	30	40	50	60	70	80	90	100
5	0.26	0.52	0.77	1.03	1.29	1.55	1.81	2.06	2.32	2.58
10	0.52	1.03	1.55	2.06	2.58	3.10	3.61	4.13	4.64	5.16
15	0.77	1.55	2.32	3.10	3.87	4.64	5.42	6.19	6.97	7.74
20	1.03	2.06	3.10	4.13	5.16	6.19	7.22	8.26	9.29	10.32
25	1.29	2.58	3.87	5.16	6.45	7.74	9.03	10.32	11.61	12.90
30	1.55	3.10	4.64	6.19	7.74	9.29	10.84	12.38	13.93	15.48
35	1.81	3.61	5.42	7.22	9.03	10.84	12.64	14.45	16.25	18.06
40	2.06	4.13	6.19	8.26	10.32	12.38	14.45	16.51	18.58	20.64
45	2.32	4.64	6.97	9.29	11.61	13.93	16.25	18.58	20.90	23.22
50	2.58	5.16	7.74	10.32	12.90	15.48	18.06	20.64	23.22	25.80
55	2.84	5.68	8.51	11.35	14.19	17.03	19.87	22.70	25.54	28.38
60	3.10	6.19	9.29	12.38	15.48	18.58	21.67	24.77	27.86	30.96

Table 2-3Boom Drift Chart (Cylinder length change in millimeters)

Coeff. = 0.000774 (1/ °C)											
STROKE				Temper	ature Chan	ge (°C)					
(m)	5	10	15	20	25	30	35	40	45	50	55
1.5	5.81	11.61	17.42	23.22	29.03	34.83	40.64	46.44	52.25	58.05	63.86
3	11.61	23.22	34.83	46.44	58.05	69.66	81.27	92.88	104.49	116.10	127.71
4.5	17.42	34.83	52.25	69.66	87.08	104.49	121.91	139.32	156.74	174.15	191.57
6	23.22	46.44	69.66	92.88	116.10	139.32	162.54	185.76	208.98	232.20	255.42
7.5	29.03	58.05	87.08	116.10	145.13	174.15	203.18	232.20	261.23	290.25	319.28
9	34.83	69.66	104.49	139.32	174.15	208.98	243.81	278.64	313.47	348.30	383.13
10.5	40.64	81.27	121.91	162.54	203.18	243.81	284.45	325.08	365.72	406.35	446.99
12	46.44	92.88	139.32	185.76	232.20	278.64	325.08	371.52	417.96	464.40	510.84
13.5	52.25	104.49	156.74	208.98	261.23	313.47	365.72	417.96	470.21	522.45	574.70
15	58.05	116.10	174.15	232.20	290.25	348.30	406.35	464.40	522.45	580.50	638.55
16.5	63.86	127.71	191.57	255.42	319.28	383.13	446.99	510.84	574.70	638.55	702.41
18	69.66	139.32	208.98	278.64	348.30	417.96	487.62	557.28	626.94	696.60	766.26

Length change in mm = Stroke (m) X Temperature Change (°C) X Coeff. (1/ °C) X 1000 mm/m

OVERLOAD INSPECTION

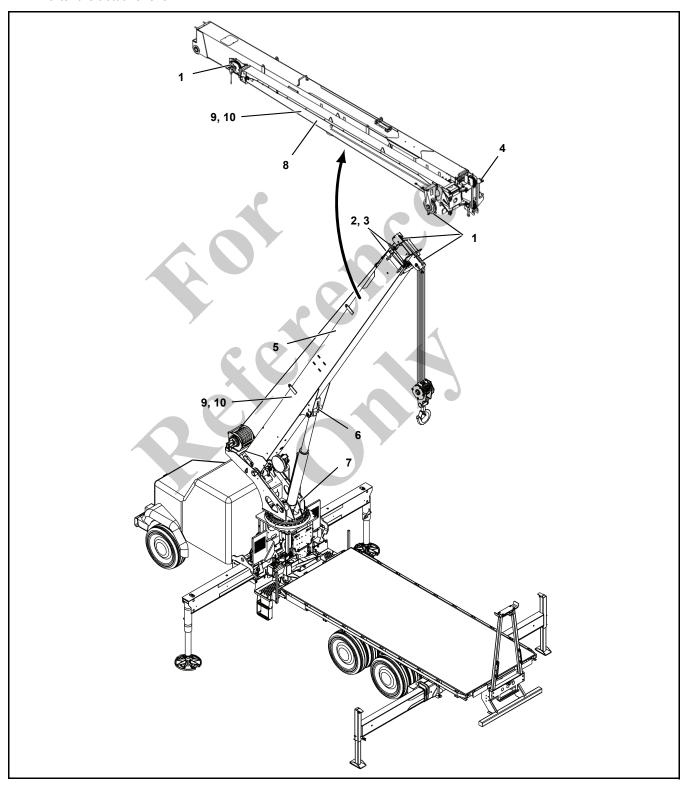
This information supplements the Rated Capacity Limiter (RCL) manual supplied with each Grove crane.

When the RCL system has acknowledged an overload on your crane, you must carry out specified inspections on the crane.

These inspections apply only to overloads up to 50%. For overloads of 50% or higher, crane operation must be stopped immediately and Crane Care must be contacted for corrective action.

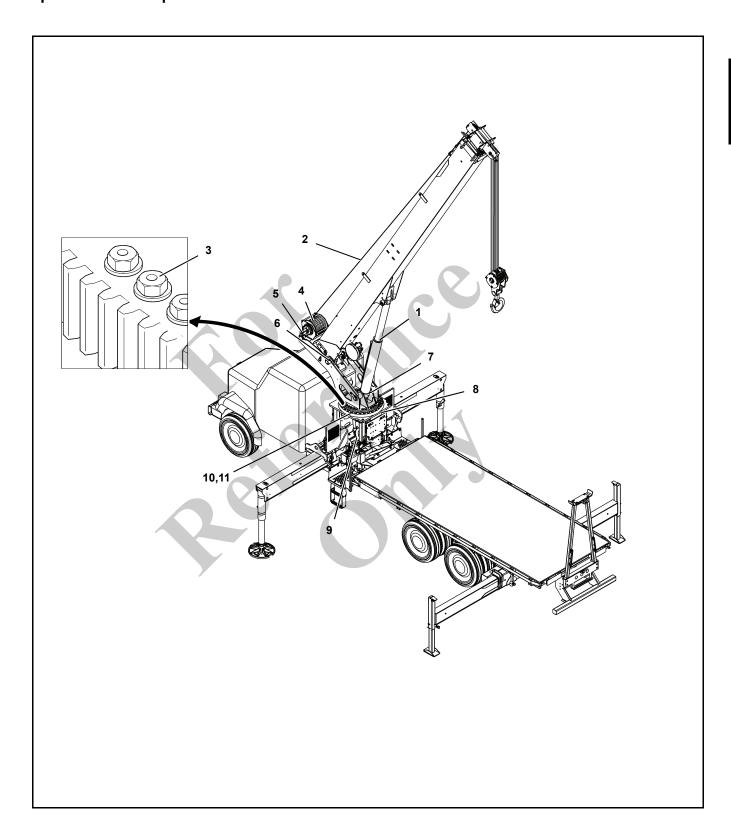
Overload Hazard!

To avoid an accident caused by overload damage to your crane:

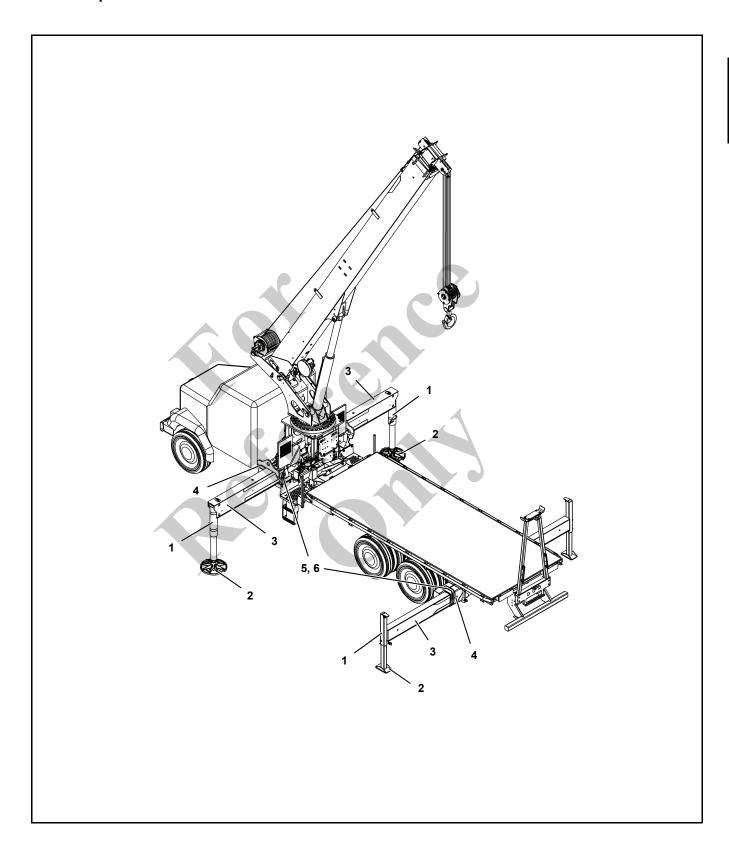

- Perform the inspections outlined in this publication for overloads up to 50%.
- Stop operating the crane and contact Manitowoc Crane Care immediately for overloads of 50% and higher.

NOTE: If your crane is equipped with CraneSTAR, an overload warning will be posted to the web site for review by the crane owner.

Overload warnings do NOT indicate real time events! Warnings could be sent 24 hours (or more) after the actual event.


Boom Inspection

Ove	erload less than	25%	
1	Sheaves, Rope Guides	Inspect all for damage.	
2	Collar-Wear Pads, Pad Retainers	Inspect for damage.	
Ove	erload from 25%	to 49%	
1	Sheaves, Rope Guides	Inspect all for damage.	
2	Collar-Wear Pads, Pad Retainers	Inspect all for damage.	
3	Collar-welds	Inspect all for damage.	
4	Pinning Areas	Inspect all for cracks.	
5	Telescopic Sections	Inspect for bent or twisted sections. Check the boom for straightness.	
6	Lift Cylinder Head Area	Inspect for bends or cracked welds.	
7	Turret-Base Section	Inspect for cracked welds.	
8	Jib Section	Inspect for bent or twisted section. Check for straightness.	
9	Welds	Inspect for cracks.	
10	Paint	Inspect for cracked paint which could indicate twisted, stretched, or compressed members.	


Superstructure Inspection

Ove	rload less than	25%	
1	Lift Cylinder	Inspect for leaks.	
2	Wire Rope	Inspect all for damage.	See topic in Introduction section of Service Manual.
3	Turntable Bearing	Check bolts for proper torque.	See topic in Swing section of Service Manual.
Ove	rload from 25%	to 49%	
1	Lift Cylinder	Inspect for leaks.	
2	Wire Rope	Inspect all for damage.	See topic in Introduction section of Service Manual.
3	Turntable Bearing	Check bolts for proper torque.	See topic in Swing section of Service Manual.
4	Hoist/Drums	Inspect each for damage.	
5	Hoist Brakes	Brakes must hold rated line pull.	
6	Bearing Main Boom Pivot Pin	Inspect for deformation, cracked welds.	
7	Lift Cylinder- Lower Mount	Inspect pin and welds.	
8	Turret Area	Inspect for deformation, cracked welds.	
9	Mounting Studs	Check bolts for proper torque.	3
10	Welds	Inspect for cracks.	
11	Paint	Inspect for cracked paint which could indicate twisted, stretched, or compressed members.	

Carrier Inspection

Ove	erload less than	25%
1	Stabilizer Cylinders	Inspect for leaks.
2	Outrigger Pads	Inspect for deformation and cracked welds.
Ove	erload from 25%	to 49%
1	Stabilizer Cylinders	Inspect for leaks.
2	Outrigger Pads	Inspect for deformation and cracked welds.
3	Outrigger Beams	Inspect for deformation and cracked welds.
4	Outrigger Boxes	Inspect for deformation and cracked welds.
5	Welds	Inspect for cracks.
6	Paint	Inspect for cracked paint which could indicate twisted, stretched, or compressed members.

SECTION CONTENTS

SECTION 3 CONTROLS AND OPERATING PROCEDURES

Truck Cab Controls 3-1	Foot Throttle
Truck Cab Ignition Switch	Hand Throttle
Power Take Off	Radio Remote Switch (Optional) 3-7
Park Brake	Handheld Outrigger Controls (Optional) 3-7
Engine Speed Governor	Load Chart

Truck Cab Ignition Switch	3-1	Hand Throttle	3-7
Power Take Off	3-2	Radio Remote Switch (Optional)	3-7
Park Brake	3-2	Handheld Outrigger Controls (Optional)	3-7
Engine Speed Governor	3-2	Load Chart	3-7
Neutral Start/Safety Switch	3-2	Rated Capacity Limiter (RCL)	3-7
Outriggers	. 3-2	Crane Cab Climate Controls	3-7
Outrigger Controls	3-2	Diesel Heater Controls	
Crane Level Indicators	3-2	Heater Cold Weather Fuel Mixture	3-8
Remote Engine Throttle	3-3	Air Conditioner Controls (Optional)	3-8
Outrigger Controls	3-3	Operating Procedures	3-8
Crane Controls		Equipment Familiarization	3-8
Hydraulic Oil Temperature Warning Light	3-4	Crane Cab Access	3-8
Crane Ignition Switch	3-4	Equipment Checks	3-8
Crane Function Power Switch	3-4	Cold Weather Operation	3-9
Warning Horn Switch	3-6	Anti-two-block Check	3-9
Swing Control Lever	3-6	RCL Check	3-9
Swing Brake Pedal	. 3-6	hoist System Operation	3-9
Swing Brake Switch	3-6	Hoist Two Speed Operation	
Adjustable Swing Speed Valve	3-6	Work Site Location	
Telescope Control Lever	. 3-6	Before Leaving the Truck Cab	
Boom Telescope Pedal (Optional)	3-6	Before Making the Lift	
Hoist Control Lever		Load Chart	
High Speed Switch Hoist	. 3-6	Using the Load Chart	
Hoist Rotation Indicator (Optional)	. 3-6	Lifting the Load	
Boom Lift Control Lever	3-7	Unattended Crane	
Boom Lift Control Pedal (Optional)	. 3-7	Shut Down and preparation For Road Travel	
		SHUL DOWN AND DIEDAFALION FOR ROAD TRAVEL	J-II

This section contains information on the controls and operating procedures to include:

- Truck Cab Controls
- **Outrigger Controls**
- **Crane Controls**
- **Operating Procedures**
- Hoist System Operation
- Work Site Location
- Load Chart

- Lifting the Load
- Shutdown and Preparation for Travel

TRUCK CAB CONTROLS

The truck cab controls described here are those controls that are used in conjunction with the crane controls.

Truck Cab Ignition Switch

Truck cab ignition switch must be OFF in order for crane cab ignition switch to be operable.

Power Take Off

Manual Shift Control

The PTO is engaged when the knob on the dash or floor is pulled out and disengaged when the knob is pushed in. The truck gear shift lever must be in neutral and the clutch depressed whenever the knob is moved.

Air Shift Control

The PTO is engaged when the switch is moved to apply air to PTO and disengaged when switch is in off position. The truck gear shift lever must be in neutral and clutch depressed when switch is moved. The transmission selector lever must be returned to "N" for stationary vehicle operation. The power take-off may be disengaged while in any transmission range provided that the load has first been removed from the PTO.

Electric Shift Control

Full torque electric shift PTO's are controlled by a switch. To operate, disengage the clutch, shift to fourth or fifth gear, and operate the switch down to engage the PTO or up to disengage the PTO. Return the gear shift to neutral and engage the clutch.

Power Shift Control

If the vehicle is equipped with automatic transmission, the power take-off must be engaged with the engine at idle. See transmission manufacturer's instructions for special procedures.

Park Brake

The truck brake must be firmly set before leaving cab to begin operation. If the ground surface is icy or slick or is sloped, you may be required to help immobilize the truck with wheel chocks.

Engine Speed Governor

Some diesel engines are equipped with a variable speed governor which overrides the engine speed governor. If equipped, two knobs in the cab select between crane operation and normal driving operation.

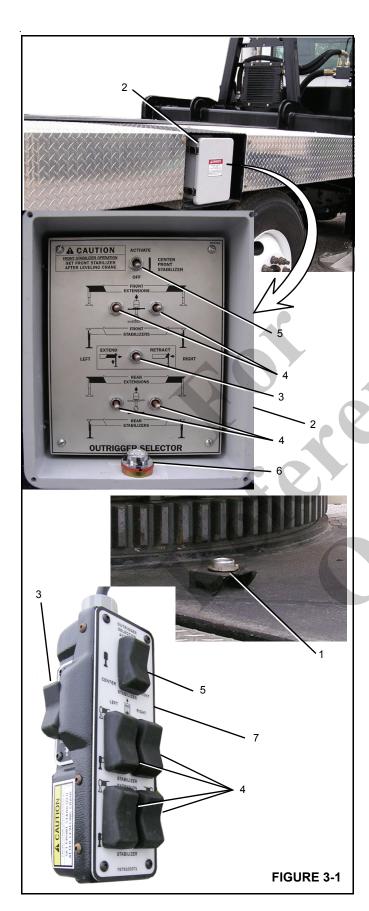
Neutral Start/Safety Switch

Truck must be equipped with neutral/start safety switch on truck transmission. Check occasionally to ensure it is working correctly and repair if it is not.

OUTRIGGERS

Outrigger Controls

The outrigger controls (Figure 3-1) are electrically operated and include four outrigger selector switches, a extend/retract switch, and an optional front stabilizer switch. A remote engine throttle is located under the door of the crane cab for engine speed control when operating the outriggers.


Crane Level Indicators

The crane has one primary, two secondary level indicators. An optional secondary level indicator is available for the crane cab. The primary level indicator is used to verify the accuracy of the secondary level indicators.

The primary level indicator is located behind the turret bearing (1) (Figure 3-1). The secondary level indicators are located in the outrigger control boxes (6) (Figure 3-1).

The optional secondary level indictor is located in the crane cab (24) (Figure 3-3) and is installed when the optional handheld outrigger control for the crane cab is purchased.

Item	Description
1	Primary Level Indicator
2	Outrigger Control Box
3	Front Center Stabilizer Switch (optional)
4	Outrigger Selector Switches
5	Extend/Retract Switch
6	Secondary Level Indicator
7	Hand Held Outrigger Control (Optional)

Remote Engine Throttle

The remote engine throttle is located under the crane cab door (Figure 3-2) and is used to control the engine speed when operating the outriggers. Pull out to increase engine speed and turn clockwise to lock. Turn counterclockwise to unlock and push in to reduce engine speed.

Outrigger Controls

The outrigger component controls are used to set the outriggers. Check the load chart for the proper outrigger configuration.

Outrigger Control Boxes

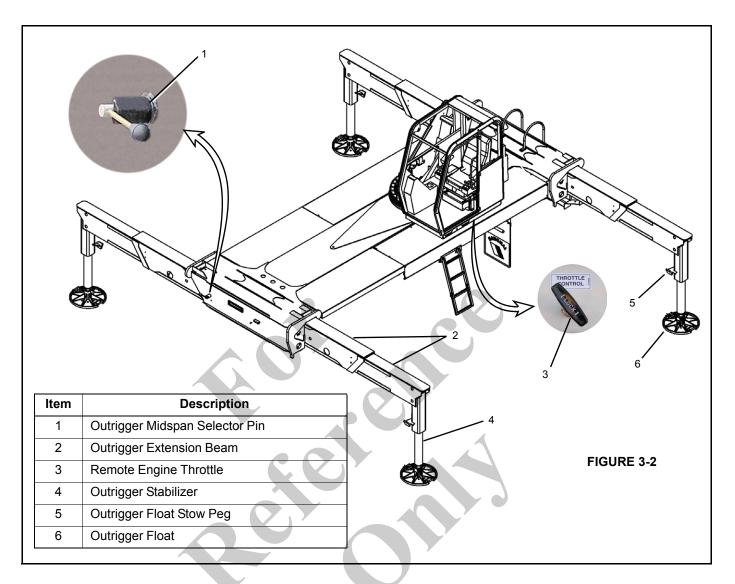
The outrigger control boxes (2) are located on the side of the crane (Figure 3-1) and contain the outrigger controls.

Handheld Outrigger Control

An optional handheld outrigger control (7) is available for the crane cab.

Extend/retract Switch

The extend/retract switch (3) is used in conjunction with the outrigger selector switches to control the outrigger functions.


Outrigger Selector Switches

The outrigger selector switches (4) are used to select the outrigger component. To extend or retract an outrigger component, first select the component with the outrigger selector switch, then select extend or retract with the extend/retract switch.

Center Front Stabilizer Switch

The center front stabilizer switch (5) is used to lower and raise the center front stabilizer. To operate the center front stabilizer, press the center front stabilizer switch and then press extend/retract switch.

NOTE: The center front stabilizer automatically retracts if any of the other components are adjusted and must be reset if lifting is to be continued.

CRANE CONTROLS

The crane controls are located in the crane cab and are used for all crane functions. See (Figure 3-3) for crane cab item number (#) identification. For best control response, run the engine at governed RPM when operating the crane.

NOTE: The operator must be in the crane cab seat for the crane controls to operate properly.

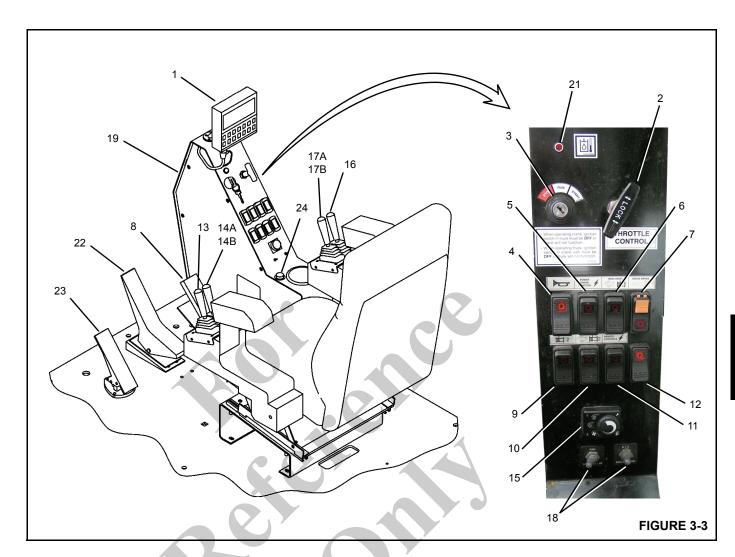
Hydraulic Oil Temperature Warning Light

The Hydraulic Oil Temperature Warning Light (21) is located on the crane cab console and illuminates when the hydraulic oil overheats. If overheating occurs, run the crane at idle with the controls in neutral until the light goes out.

CAUTION

Do not operate the crane with overheated hydraulic oil or damage to seals in the hydraulic components may result.

Crane Ignition Switch


The crane ignition switch (3) is located on the crane cab console and controls the truck engine and crane cab power. The igniton switch has three positions. OFF shuts down engine and cab power, ON activates truck engine ignition as well as all cab power, and Start is truck engine start.

NOTE: The truck ignition must be OFF before the truck engine can be started from the crane cab.

Crane Function Power Switch

The crane function power switch (5) is located on the crane cab console and is used to disable the crane functions for the armrest controls. This prevents inadvertent operation of the crane functions due to bumping. Push the switch to the ON position to enable the armrest controllers. The red LED in the switch is illuminated when the switch is in the ON position.

Item	Description
1	RCL Console
2	Hand Throttle
3	Crane Ignition Switch
4	Warning Horn Switch
5	Crane Function Power Switch
6	High Speed Switch Main Hoist
7	Swing Brake Switch
8	Throttle Pedal
9	Auxiliary Hoist Switch
10	High Speed Switch Auxiliary Hoist
11	Radio Remote Switch
12	RCL Override Switch
13	Swing Control Lever

Item	Description
14A	Telescope Control Lever (Standard)
14B	Auxiliary Hoist Control Lever (Optional)
15	Heater Controls (Control)
16	Boom Lift Control Lever
17A	Hoist Control Lever
17B	Hoist Rotation Indicator (Optional)
18	Air Conditioner Control (Optional)
19	Crane Cab Console
20	Power Adapter (12V) (Not Shown)
21	Hydraulic Oil Temperature Warning Light
22	Telescope Pedal (Optional)
23	Swing Brake Pedal
24	Secondary Level Indicator (Optional)

Warning Horn Switch

The warning horn switch (4) is located on the crane cab console. Push the switch to sound the horn to warn fellow workers of pending movement of crane. An amber LED is illuminated when the switch is on.

Swing Control Lever

CAUTION

Do not actuate the Swing Control Lever while the Swing Brake is engaged, as the turret may push through the brake. Damage to the swing brake can occur.

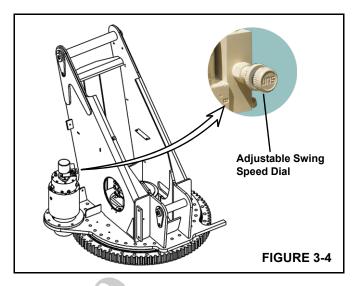
The swing control lever (13) is located on the left armrest and controls boom rotation. Push the lever forward to rotate the boom clockwise and pull back to rotate the boom counterclockwise.

The swing control lever can be used to slow and stop the swing by moving the control lever to the opposite direction of the swing. For example, if the lever is pushed forward for a clockwise swing, pull the lever back to slow and stop the swing.

Swing Brake Pedal

CAUTION

Do not actuate the Swing Control Lever while the Swing Brake is engaged, as the turret may push through the brake. Damage to the swing brake can occur.


The swing brake pedal (23) is located on the left side of the crane cab floor. The brake pedal is used to activate the swing brake and momentarily hold the turret in position.

Swing Brake Switch

The swing brake switch (7) is located on the crane cab console and is used to activate the swing brake and park the turret in position. Press the switch to activate the swing brake to keep the turret from rotating. A red LED is illuminated when the swing brake switch is applied.

Adjustable Swing Speed Valve

The crane is equipped with an adjustable swing speed valve (Figure 3-4) that sets the maximum swing speed of the machine. Loosen the lock collar and turn the dial clockwise to increase and counterclockwise to decrease speed. Secure the setting with the lock collar.

Telescope Control Lever

The telescope control lever (14A) is on the left armrest. Push the lever to forward to extend the boom and pull back to retract the boom.

NOTE: Auxiliary Hoist Control Lever (14B) when the crane is equipped with an auxiliary hoist.

Boom Telescope Pedal (Optional)

The telescope foot pedal (22) is used to extend and retract the boom. Rock the pedal forward to extend the boom and back to retract the boom.

Payout loadline before extending boom. Failure to do so may cause the loadline to break or damage the crane.

Hoist Control Lever

The hoist control lever (17A) is located on the right armrest. Push forward to lower the load and pull the lever back to raise the load.

High Speed Switch Hoist

The high speed switch (6) is located on the crane cab console and is used to increase speed of the hoist. Press the switch to activate the hoist high speed.

Hoist Rotation Indicator (Optional)

The hoist rotation indicator (RDI) is located on top of the hoist control lever (17B). The indicator is electronically driven by a signal from an electronic transmitter and sensor attached to the hoist. A pulsating signal is sensed by the operator's thumb during hoist operation.

Boom Lift Control Lever

The boom lift control lever (16) is located on the right armrest and is used to raise and lower the boom. Push the lever forward to lower the boom and pull back to raise the boom.

Boom Lift Control Pedal (Optional)

The boom lift control pedal is located on the cab floor and is used to raise and lower the boom. Rock the pedal forward to lower and back to raise the boom.

Foot Throttle

The foot throttle (8) is located on the crane cab floor and is used to control the engine speed. Depress the foot throttle to accelerate the engine speed and release to return to idle.

Hand Throttle

The hand throttle (2) is located on the crane cab console. Pull out and rotate to lock to accelerate engine. Turn to unlock and push in to return engine to idle speed.

Radio Remote Switch (Optional)

The radio remote switch (11) is used to enable the radio remote controls. The crane function power switch, crane ignition, and truck igniton must all be OFF before the crane can be operated with a radio remote control.

Handheld Outrigger Controls (Optional)

The handheld outrigger controls (Figure 3-1) are stored in the crane cab and are used for outrigger operation from the crane cab.

Load Chart

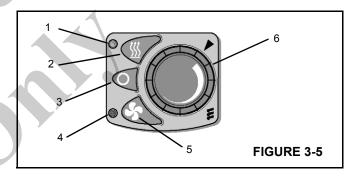
The load chart is stored in a pocket in the crane cab. The load chart contains lifting capacities of the crane in all allowable lifting configurations.

Rated Capacity Limiter (RCL)

The RCL provides the crane operator with the information required for the crane to perform safely within its design parameters. The RCL console (1) displays information on length and angle of boom, working radius, rated load, and total weight being lifted.

The RCL continuously monitors these parameters and provides the operator with an updated readout of the crane status. If a nonsafe condition is approached, the RCL warns the operator with an alarm and locks out the crane functions that can aggravate the situation.

The RCL only aids the operator when properly programmed with the proper load chart and crane configuration. To prevent injury or death to personnel, be sure the RCL is programmed before crane operation.


CRANE CAB CLIMATE CONTROLS

The cab climate controls (15, 18) (Figure 3-3) are used to adjust the heating and air conditioning for operator comfort.

Diesel Heater Controls

The diesel heater controls (Figure 3-5) are as follows:

- The heat START switch (2) ignites the heater. The start sequence is:
 - The heater ignites and the fan starts at low speed.
 - The heater operating temperature is reached and switches to the boost mode.
 - The fan speed increases.
- The red LED (1) is on when the heater is in the heat mode.

ITEM	DESCRIPTION
1	Heat ON LED
2	Heat Start Switch Heat Mode
3	Heater Unit OFF switch
4	Fan Ventilation LED
5	Fan ON Switch Ventilation Mode
6	Temperature Control Knob

NOTE: It takes about two minutes for the heater to reach operating temperature when first turned on.

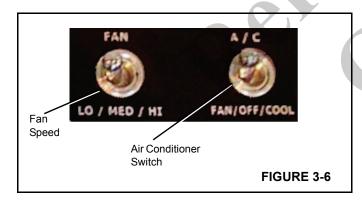
If the heater fails to ignite, check the fuel and the fuel line stopcock.

 The temperature control knob (6) regulates the cab comfort level. Turn the knob clockwise to increase the temperature, opposite to decrease. The temperature range is from 8°C (46°F) to 34°C (93°F). The heater cycles between High, Medium, and Low modes to keep the temperature setting.

- The FAN ON switch (5) turns on the fan without heat for air circulation to ventilate the cab. The blue LED (4) is on when the heater is in the ventilation mode.
- The OFF switch (3) shuts the heater down. If the heater is in heat mode, the shutdown cycle is initiated and the fan continues to run for about four minutes after the igniter goes out.

NOTE: If the heater is turned off and back on, the heater completes the shut down cycle before initiating the start up cycle.

Heater Cold Weather Fuel Mixture


At temperatures below -7° C (20° F), add a cold weather additive or mix kerosene with the diesel fuel at a 50/50 ratio.

Do not mix gasoline with diesel fuel.

Air Conditioner Controls (Optional)

The air conditioner (A/C) is controlled by two toggle switches on the crane cab console (Figure 3-6).

The FAN switch sets the fan speed and the A/C switch controls the air conditioner. The fan seed can be set to LO (low), MED (medium), or HI (high). Both the fan and air conditioner are on when the A/C switch is in the COOL position. Only the fan runs when the switch is in the FAN position.

Turn the fan switch to the HI position and the A/C switch to COOL when the air conditioner is first turned on. When the cab is comfortable, adjust the temperature by turning the fan switch to the low or medium position.

If the compressor cycles for only a few seconds at a time when the unit is first turned on, set the fan switch to the low position until the compressor continues to run. Then gradually switch to medium and high.

OPERATING PROCEDURES

You need to be familiar with the safety precautions outlined in SECTION 2 before operating the crane.

Equipment Familiarization

All members of the crew should become familiar with the location and operation of the controls, the correct operating procedure, the maximum lifting capacities, and the Safety Precautions in Section 2 of this manual. Carefully follow the operating procedures outlined below and the information in the load charts located in the crane cab.

Crane Cab Access

Pull the ladder out from under the crane cab door before entering the crane cab. Do not try to access the crane cab by other means. Take all precautions not to fall off the crane. Falling from any elevation can cause serious injury or death.

Equipment Checks

Prior to placing the unit in operation, do a complete walkaround visual inspection and look for structural damage, loose components, leaks, or other conditions that requires immediate correction for safe operation. The following checklist of items are suggested to ensure the crane is prepared for performing work operations. Check:

- for any unusual conditions such as pools of hydraulic fluid or lubricating oil under the chassis, any outrigger which may have crept down or up and any signs of damage or improper maintenance.
- the tires are inflated to the proper pressure.
- the level of the hydraulic reservoir.
- the operation of the "stop" and horn circuits.
- for missing and loose bolts.
- for damaged structural members and welds.
- all rope guides and cable keepers.
- all sheaves for free turning.
- the hoist cable for kinks, broken strands or other damage in accordance with instructions on "" on page 2-3.
- to see that the hydraulic hoses and fittings are in good condition and show no signs of leaking. The hoses should be free from cuts and abrasions and there should be no evidence of binding. Any damage or leakage should be repaired immediately.

- the RCL and anti-two-block system for proper operation.
- the electrical wiring connecting the various parts of the system for physical damage.

NOTE: Consult the truck manufacturer's manual for vehicle checks.

Cold Weather Operation

The following recommendations are for operating National cranes in very low (i.e., sub-zero) temperatures.

Cranes should have appropriate hydraulic oil, lubricants, and other auxiliary items required for operation in sub-zero temperatures. Operate individual crane functions to ensure they are sufficiently warmed prior to performing a lift.

Operation of cranes at full rated capacities in temperatures between -18°C (0°F) and -40°C (-40°F) or lower should be accomplished only by competent operators who possess the skill, experience, and dexterity to ensure smooth operation. Shock loading shall be avoided.

Derated capacities for each °C below -40°C

Derate the rated load shown on the capacity charts 3.67 percent for each degree celsius below -40° C.

Derated capacities for each °F below -40°F

Derate the rated load shown on the capacity charts 2 percent for each degree fahrenheit below -40° F.

Anti-two-block Check

The following tests must be performed with caution to prevent damage to the machine or injury to personnel.

Check the anti-two-block alarm light and the audible alarm by lifting the anti-two-block weight until the switch is activated. To check the anti-two-block switch:

- · manually lift the weight.
- · slowly raise the hoist cable.
- slowly extend (telescope) the boom.

A DANGER

If the light and audible alarm do not function and the hoist does not stop, the system is not working properly and must be corrected before operating the crane.

If the crane is equipped with a jib that is deployed and rigged for work, repeat the test procedure for the jib anti-two-block switch.

RCL Check

Perform the following checks to verify proper RCL operation.

- Check that the display of the main boom length agrees with the actual boom length.
- Check that the display of the main boom angle agrees with the actual boom angles.
- Check that the display of the operating radius of the crane agrees with the actual radius.

Check the load display by lifting a load of known weight. The accuracy of the load indication shall be within the tolerance of SAE J159.

A deviation between displayed and actual values indicates a malfunction and a RCL service representative shall be called for repair and/or recalibration of RCL system.

HOIST SYSTEM OPERATION

The hoist may have lifting capabilities greater than that of the crane limits. Therefore, care must be taken to ensure that the load lifted is within the crane rating. General rules for hoist operation are:

- Unwind the hoist when extending the boom.
- Use the anti-two-block system only as an aid.
- Make sure the rope is not twisted or kinked and that it is properly seated in the hoist and in sheaves.
- Always have at least three full wraps of cable on the hoist.
- Check the hoist brake when approaching the load limit of the hoist. Raise the load a few inches and return the control to neutral to check the brake.
- Do not drag the load with the hoist.
- Do not try to lift loads that are not free such as, frozen down material or poles.
- Keep tension on the rope to prevent it from becoming twisted, kinked, or improperly seated on the hoist.

Hoist Two Speed Operation

The high speed increases hoist line speed over normal operation. The high speed mode is activated by a switch located on the crane cab console.

CAUTION

If the high speed feature is run continuously or with an overload, damage to the crane or truck could occur.

To start the high speed, depress the high speed switch and operate the hoist lever on the armrest.

NOTE: Maximum Capacity with "BOS"

- One Part Line 3000 lbs. (1361 kg)
- Two Part Line 6000 lbs. (2722 kg)
- Three Part Line 9000 lbs. (4082 kg)
- Maximum line speed on third layer 240 FPM (73 mpm), fourth layer - 265 FPM (81 mpm)

WORK SITE LOCATION

Select a location that is firm, level, and dry. Avoid uneven, rocky or muddy terrain, steep grade or locations with overhead obstructions. The outrigger stabilizers must be supported on a firm level surface at the fully retracted, mid-span, or fully extended positions. Avoid overhead power lines.

Before Leaving the Truck Cab

- Position the truck so that the outriggers can be extended with no obstructions.
- Position the truck transmission to neutral
- Set the truck park brake. Wheel chocks may also be required.
- Engage the power takeoff.
- Turn the truck cab switch to OFF.

Truck must be in neutral when starting engine from crane cab to avoid sudden potential movement of truck.

Before Making the Lift

- Set the outriggers as described in the Crane Set-up section in this manual.
- Program the RCL as specified in the RCL Operator's Manual which is located in the crane cab.
- Check all controls for proper operation. If any abnormal operations are detected, the condition must be corrected before continuing.
- Check the work area for electric power lines.

LOAD CHART

Your unit is designed to provide satisfactory service if it is not loaded in excess of the maximum rated loads specified in the load chart. Overloading can create safety hazards, cause structural damage, and shorten the service life of the crane. You must understand how to use the load charts located in the crane cab. Make sure the load, the working area, and the crane configuration are within the load limit specified in the load chart.

NOTE: Load handling devices (hook blocks and slings) are considered part of the load.

Using the Load Chart

The following list is a definition of terms needed when using the load chart.

- Load Radius The horizontal distance from the centerline of rotation, before loading, to the center of the vertical load line or block. This distance is slightly greater with an unloaded boom due to deflection.
- Loaded Boom Angle The loaded boom angle is the angle between the first section boom and the horizontal with the load. The loaded boom angle combined with the boom length approximates the operating radius.
- Working Area The area measured in a circular arc above the center line of rotation to the suspended load. If no decal is present the work area is 360°.
- Freely Suspended Load The load hanging free with no direct external force applied except by the loadline.
- **Side Load** Horizontal side force applied to the lifted load either on the ground or in the air.
- Boom Length The length from boom pivot pin to the boom nose. Decals on either side of the boom shows when specific boom lengths are reached.
- Range Diagram The range diagram (Figure 3-9) shows the operating radius and height of the unloaded boom nose at all boom lengths and angles. It should be used as a guide to position unloaded loadline and to determine to approximate height to which the load can be lifted.
- Structural Limit Line Is contained in the range diagram (Figure 3-9). It shows the lowest angle the unloaded boom can be placed at for all boom lengths. Below this line the machine is structurally overloaded.

The load chart contains the lifting capacities of the crane in all allowable lifting configurations. The information is presented in three parts, one for outriggers fully retracted, one for outriggers at mid point, and one for the outriggers fully extended. Each part contains the load chart, range diagram, and hoist data sheet. In the examples shown here, the information for the outriggers fully extended is used.

NOTE: The load charts shown in this manual are examples only. See the load charts attached to the crane for actual values.

- The load chart (Figure 3-8) is used to determine the weight limit of the load based on the load radius and boom angle. All lifting devices must be included when determining the weight of the load.
- The range diagram (Figure 3-9) shows the operating radius and the height from horizontal of the unloaded boom.
- The hoist data chart (Figure 3-10) shows hoist capacity and multipart line reeving. The correct reeving for all loads listed in the load chart is also shown.

Before you can determine the crane configuration you need to know:

- the weight of the payload.
- the lifting devices needed.
- the height of the lift.
- the horizontal distance from the center of rotation (load radius) to where the load is to be placed.

To determine the safe operating parameters you need to:

- 1. Get the weight of the payload.
- 2. Approximate the load radius. This is the horizontal distance from crane center of rotation to where the payload is to be placed.
- Determine the lifting devices and hook block reeving using the hoist data chart.
- **4.** Calculate the combined weight of the lifting devices and payload.
- **5.** Determine the boom angle and length from the range diagram using the height and load radius of the lift.
- 6. In the load chart, take the load radius and boom angle/ length column over to the weight column and check the weight. If the weight is between two values, use the lower value.

LIFTING THE LOAD

The following general guidelines outline the proper procedure for making a lift after the crane has been properly set up.

- **1.** Position the crane in the work area and set the outriggers. See See "Outrigger Setup" on page 1.
- 2. Program the RCL. Use the load chart to estimate the values.

- Position the boom nose over the load. Do not try and drag the load with the boom or hoist.
- **4.** Perform the lift. Meter the controls when moving the load to avoid sudden stops.
- 5. Retract and lower the boom after the lift is complete.

Unattended Crane

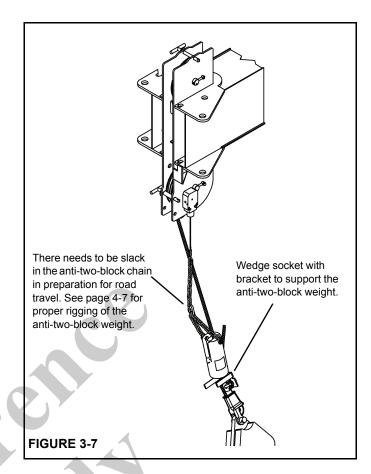
WARNING

Tipping Hazard!

Changing weather conditions including but not limited to: wind, ice accumulation, precipitation, flooding, lightning, etc. should be considered when determining the location and configuration of a crane when it is to be left unattended.

Failure to comply with these instructions may cause death or serious injury.

The configuration in which the crane should be left while unattended shall be determined by a qualified, designated individual familiar with the job site, configuration, conditions, and limitations.


SHUT DOWN AND PREPARATION FOR ROAD TRAVEL

- 1. Retract and place the boom in boom rest with the hook block slightly ahead of the front bumper.
- 2. Retract the front stabilizer.
- 3. Retract the outriggers and stabilizers.
- Remove the stabilizer pads and place on the stowage brackets located on the side of the stabilizer.
- **5.** Connect the hook block to the tie-down cable so that it cannot swing freely.
- **6.** Secure the hook block and anti-two-block weight:
 - **a.** Slowly hoist up until there is a slight tension on the hoist cable. It may be necessary to override the antitwo-block function to tension the cable.
 - **b.** The the anti-two-block weight needs to be resting on the wedge socket so that there is slack in the anti-two-block-chain.

NOTE: There needs to be enough slack in the anti-two-block chain so that the anti-two-block switch does not switch between open and close during travel.

If the chain is too tight, road bounce causes the anti-two-block switch to open and close numerous times and this can damage the switch.

- **7.** Turn off the ignition and all other switches in the crane cab.
- 8. Exit the cab, lock the door, and stow the access ladder.
- **9.** Secure any loads or lifting devices on truck bed or body.
- **10.** Disengage the Power Take Off (PTO) and start truck from the truck cab.
- 11. Release the park brake before moving truck.

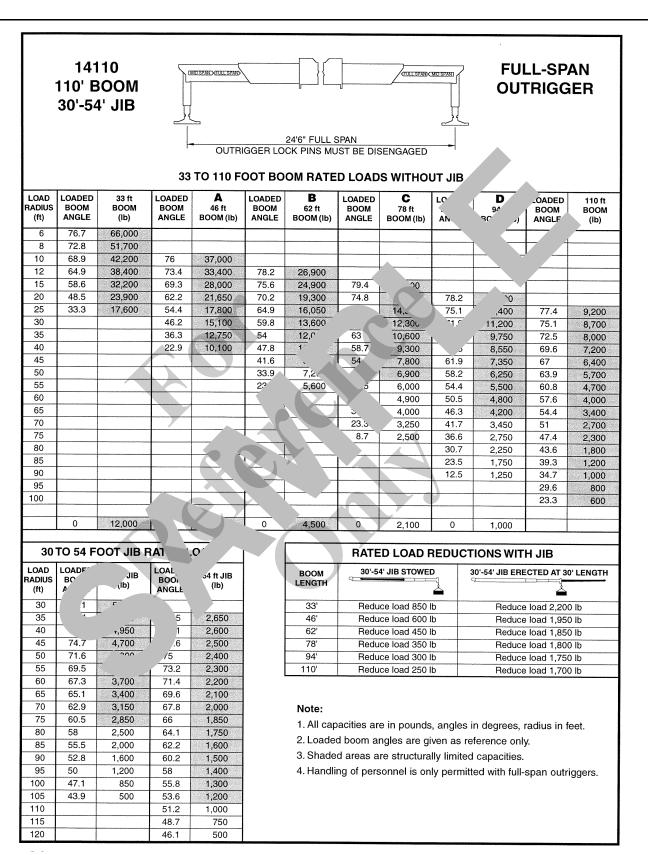


FIGURE 3-8

SECTION 4 SET-UP

SECTION CONTENTS

Outrigger Setup	4-1
Proper Leveling of the Crane	4-1
Bubble Level Adjustment	4-1
Site Selection	4-2
Setting the Outriggers	4-2
Outrigger Monitoring System (OMS)	
(Optional—Standard in North America)	4-3
Jib Safety Information	4-3
Side Folding-swing Around Jib Operation	4-4
Deployment Procedure	4-4
Stowing Procedure	4-6
Jib Removal	4 7
old Relifeval	4-7
Jib Maintenance	

Anti-two-block Weight Installation 4-
Stow Pegs for hoist Cable 4-
Multipart Line Reeving 4-
Using Multiple Part Lines 4-
Lifting A 33 Ton (66,000 Lbs) Load 4-
Installing Cable On The Hoist 4-
Install the remainder of the cable, as applicable 4-
Wedge Sockets 4-
Terminator Wedge Installation4-
Wedge Socket Installation 4-1
Dead-end Rigging 4-1

This section contains information on how to perform the following tasks:

- Set the outriggers.
- Erect the jib.
- Stow the jib
- Remove the jib
- Use multipart reeving.
- Install the hoist cable.
- Install the anti-two-block weight.
- Install a wedge socket.

Do not operate outriggers unless they are visible to either the operator or a designated signal person to avoid crushing injury.

OUTRIGGER SETUP

Proper Leveling of the Crane

ASME B30.5 specifies that if a crane is not level within 1% of grade, the allowable capacities must be reduced. Therefore, whether lifting on rubber or outriggers, it is essential that the crane is level to within 1% of grade. The bubble level that is

provided on the crane is calibrated to be accurate within 1% of grade.

To properly level the crane, the boom must be positioned over the front of the crane, fully lowered to horizontal and fully retracted (for cranes fitted with a boom rest, the boom shall be stowed onto the rest). Raise and level the crane using the outriggers; refer to *Setting the Outriggers*, page 4-2.

A working crane may settle during lifting operations. Frequently check the crane for level. When rechecking the crane for level, the boom must be positioned over the front of the crane, fully lowered to horizontal and fully retracted (for cranes fitted with a boom rest, the boom shall be stowed onto the rest). If necessary, relevel the crane using the procedures under *Setting the Outriggers*, page 4-2.

Bubble Level Adjustment

The bubble level adjustment should be checked periodically; if it is suspected that the bubble level indicator is out of adjustment, verify and adjust the bubble level as follows:

- 1. Position the crane on a firm, level surface.
- Extend and set the outriggers. Level the crane, as indicated by the bubble level indicator, using the outriggers.
- Place a miracle pointer level, carpenter level, or similar type device on a machined surface such as the turntable bearing or bearing mounting surfaces.

- **4.** Using the outriggers, level the crane as indicated on the leveling device used in step 3.
- Using the bubble level indicator mounting screws, adjust the bubble level indicator to show level.

Site Selection

The outrigger floats must be on a firm solid surface that is level. The surface must keep the crane stable and not allow the stabilizer float to sink or slide. Avoid areas that are:

- uneven
- rocky
- muddy

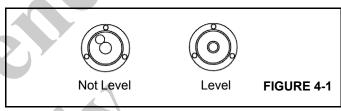
NOTE: Use the primary level indicator (Figure 3-1) to verify the accuracy of the secondary level indicators (Figure 3-1 and Figure 3-2).

To adjust the secondary level indicator:

- Level the crane with the outriggers using the primary level indicator.
- Adjust the secondary level indicator with the adjustment screws so that the bubble is in the center (Figure 4-1).

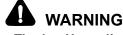
Setting the Outriggers

The outrigger setup procedure is as follows:


- Open the outrigger control box on the side of the truck (Figure 3-1).
- Select the desired outrigger beam with the selector switch and press the extend/retract switch to extend the outrigger beam.
- 3. Set all four outrigger beams to:
 - **a.** the fully retracted position. Does not require the outrigger beams to be extended.
 - **b.** the midpoint position. Engage the manual midspan over-center locks for the midpoint position.
 - c. the fully extended position.

All four outriggers must either be fully retracted, at the midpoint, or fully extended, and the RCL set to the correct position. Failure to do so creates a tipping hazard.

- **4.** Remove the outrigger floats from the carrying brackets and place the floats under the stabilizer.
- Select the desired stabilizer with the stabilizer selector switch and press the extend/retract switch to extend the stabilizer.
- **6.** Secure the outrigger floats to the stabilizers with the pins and clips.
- 7. Extend the two front outrigger beams to either the mid span or full span width and lower the stabilizer legs until the front truck tires clear the ground.
- **8.** Extend the two rear outrigger beams to the same position as the front beams.
- 9. Using the level indicator, adjust the stabilizers until the bubble is in the center of the bulls eye. Do not allow the tires to touch the ground. If it is suspected that the bubble level indicator is out of adjustment, verify and adjust the bubble level using the procedures under Bubble Level Adjustment, page 4-1.


10.

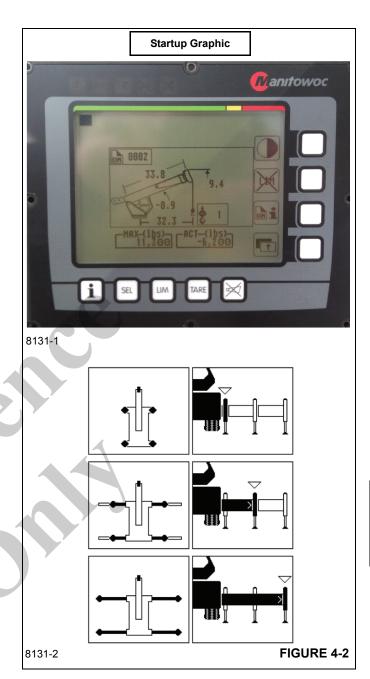
11. Lower the center front stabilizer only after all other stabilizers are set. Press the front stabilizer switch to activate and the extend/retract switch to extend. Hold the extend/retract switch for two seconds after the stabilizer contacts the ground. The front stabilizer is automatically set at the correct ground pressure.

After the center front stabilizer is set, it automatically retracts if any other stabilizer is adjusted. Reset the center front stabilizer if this has occurred.

Tipping Hazard!

The mid-extend outrigger beam lock pin must be engaged before operating on any beam from the mid-extend position.

The proper load chart and RCL program must be selected for the current outrigger configuration.


Outrigger Monitoring System (OMS) (Optional—Standard in North America)

The Outrigger Monitoring System (OMS) aids the operator in accurately programming the Rated Capacity Limiter (RCL) by automatically identifying the position of each outrigger beam. The OMS uses four sensors, one per outrigger beam, to identify when an outrigger beam is positioned to one of three pre-defined locations, including fully retracted, midextend, and fully extended.

Set up of the outriggers is the same for cranes equipped with OMS; refer to Setting the Outriggers, page 4-2.

On cranes with OMS the symbols for the outriggers will display on the crane's remote control LCD Display screen and also on the RCL screen (if equipped), refer to (Figure 4-2).

If the crane is setup on outriggers and "On Outriggers" is chosen when programming the RCL, then the OMS indicates to the RCL the horizontal position of each of the four outrigger beams. Based on this information, the RCL will default to the most conservative outrigger beam configuration (i.e. If three outriggers are fully extended and one is retracted, the RCL will select retracted as the outrigger configuration). A confirmation of this configuration is all that is needed (see Figure 4-2). Refer to the Rated Capacity Limiter Operator's Manual for detailed instructions.

JIB SAFETY INFORMATION

- **1.** The anti-two-block switch weight and cord must be attached to the jib when deployed.
- 2. Do not lift load with the boom tip when the jib is pinned on the boom tip.

- Operate with jib by radius when main boom is fully extended. If necessary, increase boom angle to maintain loaded radius.
 - When radius is between points listed on capacity chart, the load shown at the next longer radius shall be used.
- **4.** Operate with jib by boom angle when main boom is not fully extended. Do not exceed rated jib capacities at any reduced boom lengths.

When angle is between points listed on capacity chart, the load shown at next lower boom angle shall be used.

- **5.** Ensure jib is stowed correctly (Figure 4-3):
 - a. Removal of swing around pins, C1, without proper installation of stow pin A and jib swing pin B, may allow jib to fall off.
 - b. Extending boom with jib stowed and failure to remove swing pins, C1, will damage unit upon extension.
- 6. Only swing jib into working or stowed position when boom is horizontal, stow pin A and jib swing pin B, are removed and swing pins, C1, are in place. Jib could swing uncontrollably if boom is not horizontal.
- Crane shall be fully set up according to proper set-up procedures outlined previously when stowing or unstowing jib.
- Operate boom and turn functions very slowly and carefully when using jib since jibs can increase boom length by 50%.
- Area where jib swings around must be clear of obstructions and power lines when stowing and unstowing jib.
- 10. Use safety glasses when pounding pins with hammer.
- 11. Do not extend/retract boom unless boom is horizontal when stow pin A and jib swing pin B are removed during stowing or unstowing procedures.
- **12.** Always put spring clips in pins to ensure that they will stay in place.
- **13.** When the jib is stowed, the boom can not be fully retracted if a boom tip attachment option is installed.

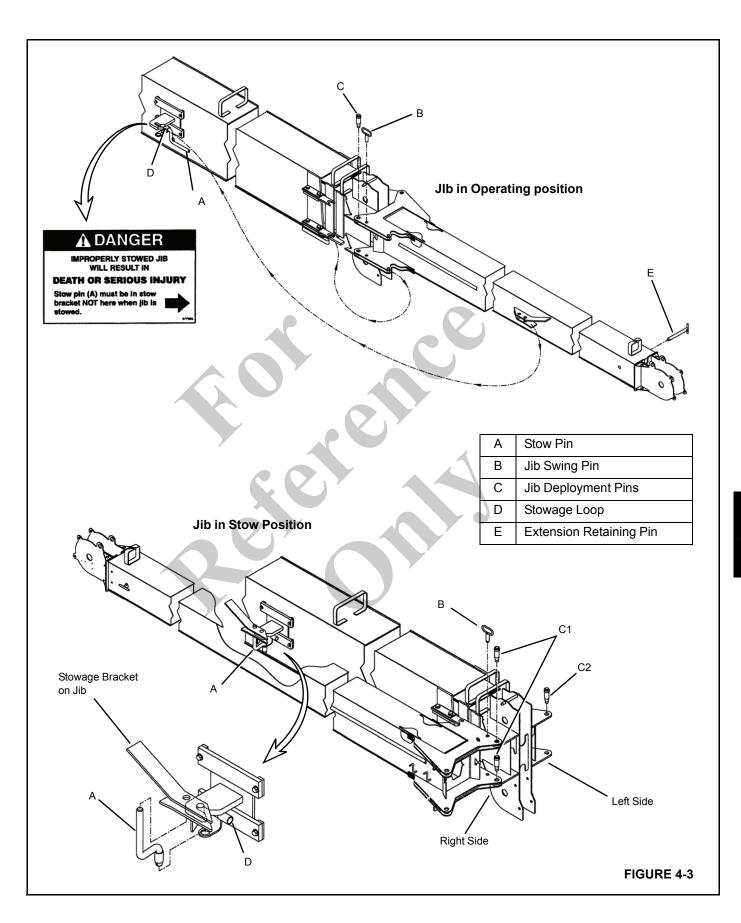
ACAUTION

- Boom tip attachment can contact jib in stowed position when boom is fully retracted.
- Contact can cause damage to boom extension system and jib stow system.
- Boom must be left extended .5 ft (.2 m) to prevent contact.
- Boom attachment must be removed for retracted boom lifting operations.

Also, on manually extendable jib options:

- **1.** Extension retaining pin, E, must always be installed when operating.
- **2.** All swing around (stow and unstowing) operations shall be done with jib retracted and pinned.
- **3.** Extendable section may slide out of 1st section jib when pin, E, is removed. Keep personnel clear of area.

SIDE FOLDING-SWING AROUND JIB OPERATION


Deployment Procedure

- 1. Using boom telescope function, fully retract boom.
- **2.** Using lift function, lower boom so that jib deployment pins C1 and C2 are easily accessible from the ground.

NOTE: When lowering the boom below horizontal, two persons may be required. With the telescope control in neutral, the boom may creep out when below horizontal.

- Install pins C1 in upper and lower jib ears. Install retainer spring clips. These pins are used as a pivot point to swing jib into the deployed position.
- **4.** Locate the stowed position of pins C2. If in jib attachment holes or boom sheave case jib holes, remove pins from storage location.
- Remove jib swing Pin B from top ear of jib.
- **6.** Remove stow Pin A from ramp/side stow bracket assembly on jib and stow in Stow Loop D and install spring clip.
- 7. Attach tag line to sheave case end of jib.
- **8.** Using the lift function, raise the boom to the horizontal position.
- Using telescope function, slowly extend boom approximately one foot. This procedure will pull the jib out of the side stow bracket.

A CAUTION

Use caution during this step. The jib is free to swing away from the boom upon boom extension.

- 10. Using tag line, swing jib into deployed position.
- 11. Remove cable keeper pins from boom sheave case and jib. Remove hook block. Pivot jib slightly to allow for loadline to be removed from boom sheave case. Remove loadline from boom sheave case and place in an area to minimize possible damage.
- **12.** Pivot jib into place, visually aligning the upper C2 pin holes. Install upper C2 pin and spring clip. A slight hammer strike may be necessary to install pins. Always use proper eye protection during this step.

- **13.** Using jib jack, position jib so that lower C2 pin holes are in alignment and install lower C2 pin and spring clip.
 - Remove the jack handle and check that the jack release valve is closed.
 - **b.** Extend the jack so that the lower C2 pin holes are aligned.
 - c. Install the lower C2 pin and spring clip.
 - **d.** Open the jack release valve and retract the jack.

- 14. Using hoist function, unspool enough loadline to reeve loadline over jib sheave case. Keep slight tension on loadline to avoid bird caging of loadline on hoist drum.
- **15.** Route loadline over jib sheave and install keeper. Install line block to end of loadline.
- **16.** Remove anti-two-block switch and weight/chain assembly and install on jib tip. Be certain to use keeper provided with switch.
- 17. Disconnect twist lock quick coupler on anti-two- block cord going to boom anti-two-block switch and attach to quick coupler on jib anti-two-block wire on rear of jib between the upper and lower jib ears.
- **18.** Install jib swing pin B and spring clip into jib ears.
- 19. For manually extendable jibs, pull extension retaining pin E, and extend second section out by pulling on sheave case. The second section jib, as it extends, will hit a mechanical stop that allows for extension pin E installation. Install pin E and spring clip.
- 20. Make ATB cord connections as required.

Stowing Procedure

1. Using lift function, lower boom so that jib deployment pins C1 and C2 are easily accessible from the ground.

NOTE: When lowering the boom below horizontal, two persons may be required. With the telescope control in neutral, the boom may creep out when below horizontal.

- 2. For manually extendable jibs, pull extension retaining pin and fully retract extendable 2nd section jib into the 1st section. Retraction of 2nd section may be facilitated by attaching loadline wedge socket to jib nose. Slowly activate the hoist up function until the 2nd section is fully retracted.
- **3.** Reinstall extension retaining pin through the 1st and 2nd section jib assembly and install spring clip.
- **4.** Remove loadline from jib sheave case. Place loadline in area to avoid possible damage from stow procedure.
- 5. Disconnect twist lock anti-two-block wire connector at rear of 1st section jib. Connect twist lock connector to anti-two-block switch connector on boom tip. Move weight/chain assembly to boom tip.
- 6. Attach tag line to sheave case end of jib.
- **7.** Remove spring clips from pins C2 on both upper and lower jib ears.
- 8. Remove jib swing pin B from the boom nose.

- 9. Remove pins C2 from upper and lower jib ears. Do not remove C1 pins at this time. C1 pins will be used as a pivot point to swing jib into stow position. A slight hammer strike may be necessary to remove pins. Always use proper eye protection during this step.
- **10.** Raise the boom to the horizontal position.
- 11. Extend boom approximately 1 foot (.3m).
- **12.** Using tag line attached to jib sheave case, slowly swing jib into stow position (parallel with 1st section boom), Pins C1 are the jib pivot points during this operation.

A CAUTION

Use caution when swinging jib to avoid unnecessary impact with 1st section boom.

- 13. Install jib swing pin B with spring clip through jib ear and boom sheave case holes. This pin will keep the jib assembly in line (parallel) with the Ist section boom. Jib swing pin B does not retain the jib in its stowed position on the Ist section boom.
- **14.** Using boom telescope function, slowly retract boom. The ramp/side stow bracket assembly on the side of the 1st section jib will engage the hook on the side of the 1st section boom, first lifting the jib and then engaging the jib side stow bracket and the boom hook completely upon full retraction of the boom.
- 15. Install stow pin A with spring clip into the ramp/ side stow bracket assembly on the jib. Complete engagement of stow brackets and proper installation of pin A is critical for secure jib stow attachment.
- **16.** Remove pins C1 from upper and lower jib ears. A slight hammer strike may be necessary to remove pins. Always use proper eye protection during this step.
- 17. Reinstall loadline over boom sheave case.

A DANGER

Visually check all pin positions and make sure the jib is fully retracted into side stow brackets, jib stow attachment is secure, and all pins and spring clips are in their proper locations. Failure to proper secure the jib during stowing and erecting may allow the jib to fall. Serious personal injury or death could result.

Always have at least one, if not both of the following in place at all times:

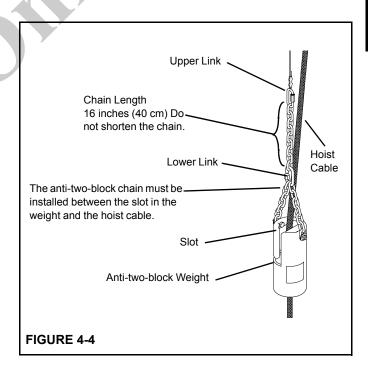
- Side stow bracket completely engaged into stow hook with stow pin A properly in place.
- Both pins C1 in upper and lower jib holes properly in place through mating holes on boom tip.

The 44 foot jib weights 1470 pounds (667 kg) at 147 inches (374 cm) when retracted from mounting pin holes.

JIB REMOVAL

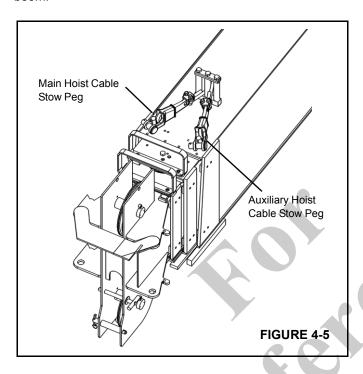
Should jib removal from the boom become necessary, proceed as follows:

- 1. Unstow and swing jib into position on the boom tip according to Steps 1 10 in the preceding jib deployment section.
- 2. Support and raise the jib at its balance point and remove the two swing around pins. Jib is now free of boom.
- 3. To install, proceed in reverse order of removal.


When the jib is stowed on side of crane, always leave the ram and handle sleeve of the jib jack pushed all the way down to reduce exposure to rusting.

Jib Maintenance

- 1. Lubricate as outlined in SECTION 5.
- 2. Check for free rotation of jib sheave daily when using jib.


ANTI-TWO-BLOCK WEIGHT INSTALLATION

To prevent the hoist cable from slipping out of the ant-twoblock weight, rig the weight as shown in Figure 4-4.

STOW PEGS FOR HOIST CABLE

Stow pegs located on top of the boom keep the hoist cables secure when not reeved over the boom nose. The main hoist cable is stowed on the right peg and the auxiliary hoist cable is stowed on the left peg as viewed from the back of the boom.

MULTIPART LINE REEVING

Multipart line reeving enables greater loads to be lifted than can be lifted with single part line. However, loads are limited by the stability and structural integrity of the crane. The load must be within the limits contained in the load chart.

Using Multiple Part Lines

The hoist data chart provides information for pull limitations on the hoist with various multipart reevings. These ratings are based on providing the proper operating safety factor on the cable supplied with the machine. Therefore, any replacement rope must meet the cable specification in of this manual.

Lifting A 33 Ton (66,000 Lbs) Load

The 1400A is rated to lift 66,000 lbs (33 ton) at a 5 ft radius with all booms retracted with an eight part block.

NOTE: Only use 5/8 inch wire rope with a rated breaking strength of 45,400 lbs on this machine.

All pulls shown below are on the fourth layer. The line pulls increase and the speed decreases on the third, second, and first layers.

NOTE: Keep at least three wraps of loadline on the drum at all times.

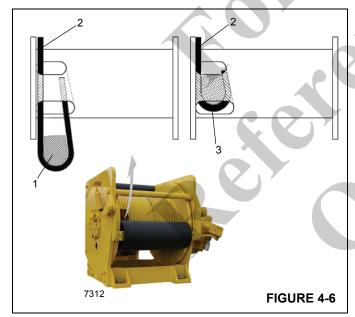
Do not deadhead hook block against boom tip when extending the boom.

1 Part Line	2 Part Line	3 Part Line	4 Part Line	5 Part Line	6 Part Line	7 Part Line	8 Part Line
Maximum Pull	Maximum Pull	Maximum Pull	Maximum Pull	Maximum Pull	Maximum Pull	Maximum Pull	Maximum Pull
Normal Speed	Normal Speed	Normal Speed	Normal Speed	Normal Speed	Normal Speed	Normal Speed	Normal Speed
9,000 Lbs	18,000 Lbs	27,000 Lbs	36,000 Lbs	45,000 Lbs	54,000 Lbs	63,000 Lbs	66,000 Lbs
170 fpm	85 fpm	57 fpm	43 fpm	34 fpm	28 fpm	24 fpm	21 fpm
High Speed	High Speed	High Speed	High Speed	High Speed	High Speed	High Speed	High Speed
4,400 Lbs 340 fpm	8,800 Lbs 170 fpm	13,200 Lbs 113 fpm	17,600 Lbs 85 fpm	22,000 Lbs 68 fpm	26,400 Lbs 57 fpm	30,800 Lbs 49 fpm	35,200 Lbs 43 fpm

The hook block must be sized to the number of line parts. For example, do not use a six part line hook block on a three part line reeving. Contact your National Crane Distributor or Manitowoc Crane Care to order the proper hook block.

INSTALLING CABLE ON THE HOIST

CAUTION


If cable is wound from the storage drum, the reel should be rotated in the same direction as the hoist.

NOTE: The cable should preferably be straightened before installation on the hoist drum.

Install cable on the hoist drum in accordance with the following procedure.

- Position the cable over the boom nose sheave and route to the hoist drum.
- 4. Position the hoist drum with the cable anchor slot on top.
- **5.** Insert the cable through the slot and position around the anchor wedge (1) Figure 4-1.

NOTE: The end of the cable should be even with the bottom of the slot for the anchor wedge.

6. Position the anchor wedge in the drum slot; pull firmly on the free end (2) of the cable to secure the wedge.

NOTE: If the wedge does not seat securely in the slot, carefully tap (3) the top of the wedge with a mallet.

7196

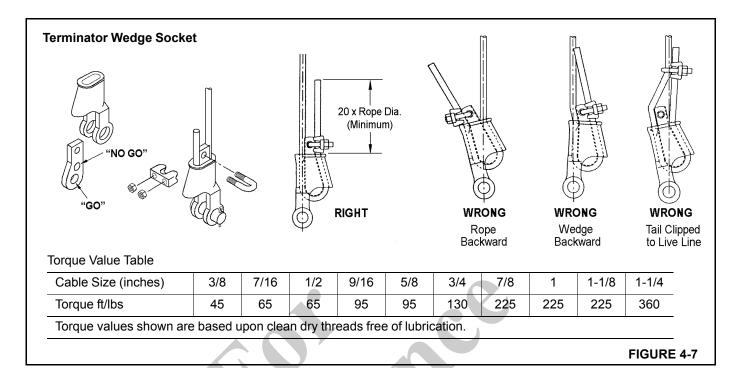
Slowly rotate the drum, ensuring the first layer of cable is evenly wound onto the drum.

Install the remainder of the cable, as applicable.

Wedge Sockets

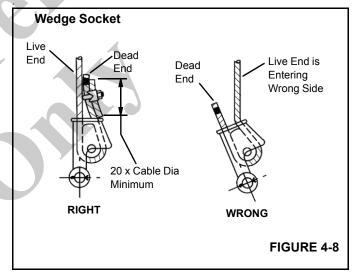
To install a wedge socket:

- Make sure the wedge socket is the proper size for the cable.
- Do not mix components of different wedge socket manufacturers.
- The wedge socket must meet the requirements of the wedge socket and wire rope manufacturers.


State and local laws may vary and require different attachment methods depending upon work conditions. The user is responsible for alternate attachment methods.

Terminator Wedge Installation

The 1400A is shipped with a terminator wedge socket which is National Crane's preferred type of socket (Figure 4-7). Other wedge socket types are shown on page 4-10.


To attach a terminator wedge Figure 4-7, use the following procedure:

- 1. Match the socket, wedge, and clip to the wire rope and size the rope with the go and no go hole in the socket.
 - The wire rope must pass through the "go" hole and not pass through the "no go" hole.
 - If the wire rope passes through the "no go" hole, the wedge is the wrong size.
 - If the wire rope does not pass through the "go" hole, the wedge is the wrong size.
- 2. Align the live end of rope, with center line of pin.
- 3. Secure dead end section of rope.
- 4. Tighten nuts on clip to recommended torque.
- Do not attach dead end to live end or install wedge backwards.
- **6.** Use a hammer to seat Wedge and Rope as deep into socket as possible before applying first load.

Wedge Socket Installation

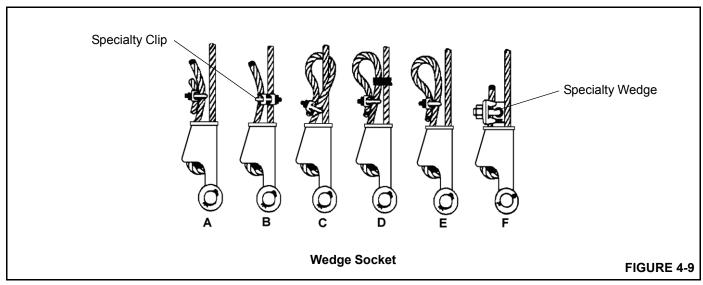
- **1.** Inspect the wedge and socket. Remove any rough edges and burrs.
- 2. The end of the wire rope should be seized using soft, or annealed wire or strand. If the end of the rope is welded, the welded end should be cut off. Do not weld on size 6X37 rope. This will allow the distortion of the rope strands, caused by the bend around the wedge, to adjust themselves at the end of the line. Refer to SECTION 1 INTRODUCTION in the Service Manual for wire rope procedures.
- 3. Make sure the live-end (Figure 4-8) of the rope is directly in line with the ears of the socket and the direction of pull to which the rope will be subjected. If the rope is loaded into the socket incorrectly, under a load the rope will bend as it leaves the socket, and the edge of the socket will wear into the rope causing damage to the rope and eventual failure.

- Insert the end of the wire rope into the socket, form a loop in the rope, and route the rope back through the socket allowing the dead-end (Figure 4-8) to protrude from the socket. Ensure the dead-end of the rope is of sufficient length to apply end treatment to the dead-end after the wedge has been seated.
- 5. Insert the wedge into the loop and pull the live-end of the rope until the wedge and rope are snug inside the socket. It is recommended that the wedge be seated inside the socket to properly secure the wire rope by using the crane's hoist to first apply a light load to the live-end.

- **6.** After final pin connections are made, increase the loads gradually until the wedge is properly seated.
- 7. The wire rope and wedge must be properly secured inside the socket before placing the crane into lifting service. It is the wedge that secures the wire rope inside the socket. The dead-end treatment is used to restrain the wedge from becoming dislodged from the socket should the rope suddenly become unloaded due to the headache ball or hook block striking the ground, etc; refer to Dead-end Rigging, page 4-11.

Dead-end Rigging

Sketches A through F (Figure 4-9) illustrate various ANSI approved methods for treating the dead-ends of wire ropes which exit a wedge socket assembly. While use of the loop-back method is acceptable, care must be exercised to avoid the loop becoming entangled with tree branches and other components during crane transport and with the anti-two block system and other components during use of the crane.


Of the methods shown below, Manitowoc prefers that method A or F be used, i.e., clipping a short piece of wire rope to the dead-end or using a commercially available specialty wedge. Typically, it is recommended that the tail length of the dead-end should be a minimum of 6 rope diameters but not less that 6 in (15.2 cm) for standard 6 to 8 strand ropes and 20 rope diameters but not less than 6 in (15.2 cm) for rotation resistant wire ropes.

When using method A, place a wire rope clip around the dead end by clamping a short extra piece of rope to the rope dead end. DO NOT CLAMP THE LIVE END. The U-bolt should bear against the dead end. The saddle of the clip should bear against the short extra piece. Torque the U-bolts according to the table titled Wire Rope Clip Torque Values (Table 4-1).

Other sources for information with which crane users should be familiar and follow is provided by the American Society of Mechanical Engineers, American National Standard, ASME B30.5, latest revised. ASME (formerly ANSI) B30.5 applies to cableways, cranes, derricks, hoists, hooks, jacks, and slings. It states, in section 5-1.7.3, "(c) Swagged, compressed, or wedge socket fittings shall be applied as recommended by the rope, crane or fitting manufacture." Wire ropes are addressed in ASME B30.5, section 5-1.7.2, ROPES, it states, in pertinent part, "(a) The ropes shall be of a construction recommended by the rope or crane manufacturer, or person qualified for that service." Additional information is published by the Wire Rope Technical Board in the Wire Rope Users Manual, latest revised edition.

Table 4-1

Wire Rope Clip Torque Values							
Clip S	izes	Torque					
Inches	mm	lb-ft	Nm				
1/8	3.18	4.5	6				
3/16	4.76	7.5	10				
1/4	6.35	15	20				
5/16	7.94	30	40				
3/8	13.28	45	60				
7/16	11.11	65	90				
1/2	12.70	65	90				
9/16	14.29	95	130				
5/8	15.88	95	130				
3/4	19.05	130	175				
7/8	22.23	225	300				
1	25.40	225	300				
1-1/8	28.58	225	300				
1-1/4	31.75	360	490				
1-3/8	38.68	360	490				
1-1/2	38.10	360	490				

5

SECTION 5 LUBRICATION

SECTION CONTENTS

General	Wide Range Intermediate Hydraulic Oil	5-3
Arctic Conditions Below -18°C (0°F) 5-1	Arctic Hydraulic Oil	5-3
Chassis Grease 5-1	Lubrication Points	5-3
Extreme Pressure Multipurpose Gear Lubricant 5-1	Internal Cable Sheave Lubrication	
Open Gear Lubricant 5-2	Boom Lubrication Inner Wear Pad	5-5
Anti-wear Additives 5-2	Boom Lubrication Side/Bottom Wear Pad	5-5
Surface Protection for Cylinder Rods 5-2	Hoist Brake Oil	5-6
Hydraulic Oil Inspection 5-2	Hoist Gearbox Oil	5-6
Standard Hydraulic Oil 5-2	1400A Hydraulic Oil Reservoir Level	5-6
Intermediate Hydraulic Oil 5-3	Wire Rope Lubrication	5-7

GENERAL

Following the designated lubrication procedure is important in ensuring maximum crane lifetime and utilization. The procedures and lubrication charts in this section include information on the types of lubricants used, the location of the lubrication points, the frequency of lubrication, and other information. The information included in this section does not include lubrication requirements for the truck chassis. Refer to appropriate truck manufacturer's manual for this information.

The service intervals specified are for normal operation where moderate temperature, humidity, and atmospheric conditions prevail. In areas of extreme conditions, the service periods and lubrication specifications should be altered to meet existing conditions. For information on extreme condition lubrication, contact your local National Crane Distributor or Manitowoc Crane Care.

Arctic Conditions Below -18°C (0°F)

In general, petroleum based fluids developed especially for low temperature service may be used with satisfactory results. However, certain fluids, such as halogenated hydrocarbons, nitro hydrocarbons, and phosphate ester hydraulic fluids, might not be compatible with hydraulic system seals and wear bands. If you are in doubt about the suitability of a specific fluid, check with your authorized Manitowoc distributor or Manitowoc Crane Care.

NOTE: All fluids and lubricants may be purchased by contacting the Manitowoc Crane Care Parts Department.

Regardless of temperature and oil viscosity, always use suitable start-up procedures to ensure adequate lubrication during system warm-up.

Chassis Grease.

CAUTION

Do not use air pressure devices to apply chassis grease otherwise damage to sealed fittings may result.

Lubricating grease of proper consistency is to be applied periodically at relatively frequent intervals with grease guns through grease fittings. Minimum apparent viscosity of 300 SUS (Saybolt Universal Seconds) at 100° F (38° C) is recommended.

CAUTION

The multipurpose grease installed during manufacture is of a lithium base. Use of a non compatible grease could result in damage to equipment.

Extreme Pressure Multipurpose Gear Lubricant

This gear lubricant is compounded to achieve high load carrying capacity and meet the requirements of either API-GL-5 or MIL-L-2105C. Unless otherwise specified, SAE 80W-90 viscosity may be used for year round service. Low temperature usage is restricted as follows:

SAE Viscosity Number	Minimum Ambient Temperature F (C)
75W	-40 (-40)
80W	-15 (-26)
85	+10 (-12)
90	+20 (-7)
140	+40 (+5)
250	+50 (+10)

Open Gear Lubricant

This is a special high-graphite adhesive lubricant that helps to eliminate fretting corrosion, is water resistant, and forms a dry lubrication film which does not attract dust. Lubricant meets NLGI Class 1-2 specifications.

Anti-wear Additives

Excessive wear in the system may cause a loss in volumetric efficiency, and may cause shutdowns for maintenance. An efficient anti-wear oil protects the components against rusting, resists oxidation and helps prevent wear.

Surface Protection for Cylinder Rods

Steel cylinder rods include a thin layer of chrome plating on their surfaces to protect them from corroding. However, chrome plating inherently has cracks in its structure which can allow moisture to corrode the underlying steel. At typical ambient temperatures, hydraulic oil is too thick to penetrate these cracks. Normal machine operating temperatures will allow hydraulic oil to warm sufficiently to penetrate these cracks and if machines are operated daily, protect the rods. Machines that are stored, transported, or used in a corrosive environment (high moisture, rain, snow, or coastline conditions) need to have the exposed rods protected more frequently by applying a protectant. Unless the machine is operated daily, exposed rod surfaces will corrode. Some cylinders will have rods exposed even when completely retracted. Assume all cylinders have exposed rods, as corrosion on the end of the rod can ruin the cylinder.

It is recommended that all exposed cylinder rods be protected using Boeshield® T-9 Premium Metal Protectant. Manitowoc CraneCARE has Boeshield T-9 Premium Metal Protectant available in 12 oz. cans that can be ordered through the Parts Department.

NOTE: Cylinder operation and inclement weather will remove the Boeshield protectant. Inspect machines once a week and reapply Boeshield to unprotected rods.

The following describe the lubrication points and gives the lube type, lube interval, lube amount, and application of each. Each lubrication point is numbered, and this number corresponds to the index number shown on the Lubrication Chart (Figure 5-1). Lube description and symbols are found in tables below.

Hydraulic Oil Inspection

Environmental and other conditions can dramatically affect the condition of hydraulic oil and filters. Therefore, specific intervals for servicing/changing hydraulic oil, filters and hydraulic tank breathers cannot be set. However, it is imperative for the continued satisfactory performance that inspections be performed on the basis of how and where each crane is used. Air borne and ingested contaminants can significantly reduce the life of oil and the condition of hydraulic oil filters and tank breathers.

Under normal operating conditions, it is recommended that hydraulic oil, filter and breathers be inspected at least every three to six months and more frequently for severe operating conditions. The inspections should be for air borne and/or ingested particles and water that deteriorate and contaminate the oil. For example, oil appears "milky" or no longer has a transparent clear to amber color. The return filter by-pass indicator should be observed daily to determine if contaminant content is high. If the indicator reaches the red zone or indicates a by-pass condition, the hydraulic oil must be sampled. The hydraulic tank breather should also be inspected to assure that it is not restricting air flow into and out of the reservoir.

To inspect the hydraulic oil, fill a small glass container with a sample of the reservoir oil and another glass container with fresh oil. Let the samples stand, undisturbed, for one or two hours. Then, compare the samples. If the reservoir oil is heavily contaminated with water, the sample will appear "milky" with only a small layer of transparent oil on top. If the "milky" appearance is due to air foaming, it will dissipate and the oil should closely match the fresh oil. Remember, replacement oil must meet ISO 17/14 or better cleanliness level and must meet John Deere Standard JDM J20C. Contact your Product Support Representative if you have any questions.

Standard Hydraulic Oil

Above 10°F (-12°C)

The factory fill standard hydraulic oil is SAE grade 10W-20 Hydraulic Oil. This fluid is acceptable for operating temperatures above -12°C (10°F).

NOTE: On units equipped with self-leveling platforms, low temperature service oils are necessary to provide proper boom functions at temperatures below +10°F (-12°C).

CAUTION

Operation of the crane with incorrect hydraulic oil in sub freezing temperature (below 32°F, 0°C) can cause damage to the extend cylinder.

Intermediate Hydraulic Oil

(-10°F to 80°F) (-23°C to 27°C)

For colder operating environments, the standard fluid may be replaced with a Low Service Temperature Multi Viscosity Hydraulic Oil with High Viscosity index 175+.

Wide Range Intermediate Hydraulic Oil.

(-30°F to 80°F) (-34°C to 27°C)

For even colder operating conditions, the standard fluid may be replaced with a petroleum based fluid developed especially for colder environments.

Arctic Hydraulic Oil.

(-10°F and below) (-23°C and below)

In general, petroleum based fluids developed especially for low temperature service may be used with satisfactory results. However, certain fluids, such as halogenated hydrocarbons, nitro hydrocarbons and phosphate ester hydraulic fluids might not be compatible with hydraulic system seals and wear bands. Arctic hydraulic oil is not recommended for service in ambient temperatures above 32°F (0°C).

If you are in doubt about the suitability of a specific fluid, check with your authorized National Crane distributor or Manitowoc Crane Care.

NOTE: All fluids and lubricants may be purchased by contacting the Manitowoc Crane Care Parts Department.

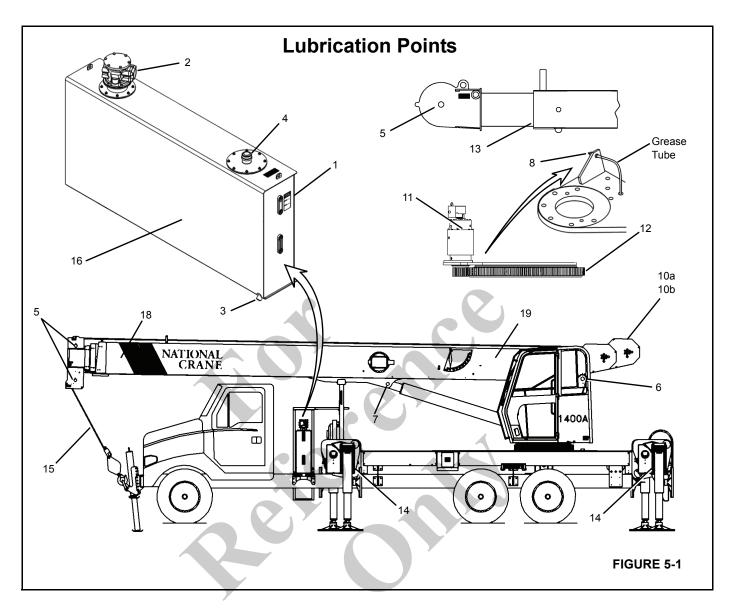
LUBRICATION POINTS

A regular frequency of lubrication must be established based on component operating time. The most efficient method of keeping track of lube requirements is to maintain a job log of crane usage.

CAUTION

Lubrication intervals (page 5-3) are to be used only as a guide. Actual intervals should be formulated by the operator to correspond accordingly to conditions such as continuous duty cycles and/or hazardous environments.

All oil levels are to be checked with the crane parked on a level surface in transport position, and while the oil is cold, unless otherwise specified. On plug type check points, the oil levels are to be at the bottom edge of the fill port.


Over lubrication of non-sealed fittings will not harm the fittings or components, but under lubrication shortens lifetime.

Worn grease fittings that do not hold a grease gun, or those that have a stuck check ball, must be replaced.

When wear pads or rotation bearings are lubricated, cycle the components and lubricate again to ensure complete lubrication of the entire wear area.

		Manitowoc Lube Specification	
Symbol	Description	Standard	Cold Weather -40° F (-40° C)
EP-MPG	Extreme Pressure Multipurpose Grease	A6-829-003477	A6-829-104275
GL-5	Extended Service Interval Gear Lubricant	A6-829-012964	A6-829-014058
HYDO	Hydraulic Oil	A6-829-006444	A6-829-101559
EP-OGL	Open Gear Lubricant, CEPLATTYN 300 Spray, NLGI Grade 1-2	A6-829-102971	Standard
AGMA EP-4	Extreme Pressure Gear Lubricant.	A6-829-100213	A6-2829-103636
WRL	Wire Rope Lubricant	A6-829-015236	Standard

NOTE: Cold weather lubricants are not sufficient for temperatures below -40° F (40° C). Use hydraulic tank heaters and insulate where appropriate.

Item	Application	Recommended Lubricant	Procedure	Frequency
1	Hydraulic oil reservoir	HYDO	Check fill change	Weekly As Required Semi-Annually
2	Oil filter, Hydraulic oil reservoir		Change or clean	After first 40 Hrs. As indicated by gauge thereafter.
3	Magnetic Plug, Hydraulic oil reservoir		Clean	At oil filter service interval.
4	Breather, Hydraulic oil reservoir		Clean	Monthly
5	Sheave pins: boom (5 plcs), jib (1 pl), block (1 pl), rooster sheave (1 pl)	EP-MPG	Grease gun	Weekly
6	Boom pivot pin	EP-MPG	Grease gun	Monthly
7	Lift cylinder pins - 2 ea.	EP-MPG	Grease gun	Monthly
8	Turntable bearing (4 plcs)	EP-MPG	Grease gun	Weekly
10a	Hoist gearbox.	AGMA EP-4	Change/check & fill	Every 1000 hours or 6 months
10b	Hoist brake	HYDO	Change/check & fill	Every 1000 hours or 6 months

Item	Application	Recommended Lubricant	Procedure	Frequency
11	Swing drive gearbox	AGMA EP-4	Change	After 100 operating hours
12	Swing gear teeth	EP-OGL	Spray Can	Monthly
13	Boom Jib	EP-MPG	Brush, roller, or grease gun	Monthly or as required
14	Outrigger beams, bottom, sides	EP-MPG	Brush or roller	Monthly or as Required
15	Wire rope (loadline)	EP-OGL	Brush or spray	Semi-Annually
16	Diffuser strainer, Hydraulic oil reservoir		Clean	Semi-Annually with Oil Change
18	Extend Sheaves.	EP-MPG	Grease Gun	Weekly
19	Retract Sheaves.	EP-MPG	Grease Gun	Weekly
20	Wire Rope Extension Cables	WRL	Spray or Brush	Any Time Boom is Disassembled or 5 Years
21	Boom Wear Pads (Not Shown)	EP-MPG	See Boom Lubrication	Monthly or as Required

Internal Cable Sheave Lubrication

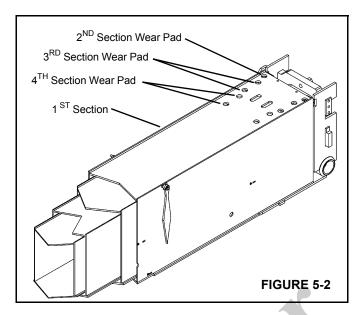
Do not, under any circumstances, work at an elevated height without using proper fall protection as required by local, state or federal regulations.

A grease gun adapter is required to lubricate the internal sheaves. The required needle grease gun fitting is:

- A 0.25 inch (6.35 mm) diameter nozzle grease gun tip (National P/N 955045).
- · Contact Manitowoc Crane Care to obtain this tip.

Lubrication of the extend and retract sheaves is as follows:

- **1.** Extend the boom until the grease access holes on the side of the boom sections are lined up.
- Lubricate the pin for the extend cable sheaves (18) (Figure 5-1) until a small amount of grease extrudes from the pin. From in front of the boom, look back through the sheave case at the pin to determine the amount of grease.
- **3.** This position also aligns the access holes in the rear of the boom for lubrication.
- 4. Lubricate the pins for the retract sheaves until a small amount of grease extrudes from the sheave pins. From in back of the boom, look up through the hoist mount at the pins to determine the amount of grease.

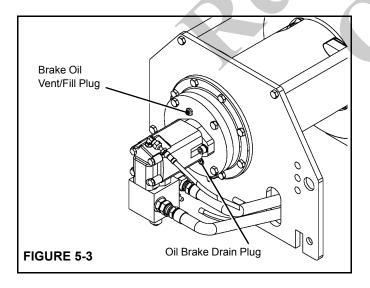

Boom Lubrication Inner Wear Pad

- 1. Fully extend and set the outriggers.
- **2.** With the boom fully retracted, remove the access plate (6) located on the top rear of the 1ST section (Figure 5-2).

- **3.** Apply grease to the wear pads on the top of the 2ND section through the access holes (4) in the 1ST section with a grease gun (Figure 5-2).
- **4.** Extend the boom to line up the access holes on the 2ND section (3) with the wear pads on the 3RD section. Apply grease to the 3RD section wear pads with a grease gun.
- **5.** Extend the boom to line up the access holes (2) on the 3^{RD} section with the wear pads on the 4^{TH} section. Apply grease to the 4^{TH} section wear pads with a grease gun.
- 6. Raise the boom to at least 75°.
- **7.** Extend the boom about 1/3 and retract to spread the grease.
- **8.** Repeat steps 3 6. Extend the boom about 2/3 and retract to spread the grease.
- **9.** Repeat steps 3 6. Fully extend and retract the boom to spread the grease.

Boom Lubrication Side/Bottom Wear Pad

- 1. Fully extend and set the outriggers.
- **2.** Lower the boom to horizontal.
- 3. Fully extend the boom and apply grease to the side and bottom of the 2^{ND} , 3^{RD} , and 4^{TH} sections with a brush.
- **4.** Raise the boom to about 75° and retract the boom.
- Extend and retract the boom several times until the grease is evenly spread.
- **6.** Repeat steps 2 5 as necessary to ensure the boom is fully lubricated.

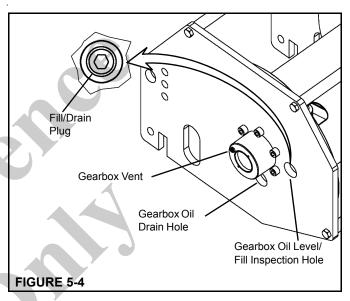


Hoist Brake Oil

To check the hoist brake oil, remove the vent/fill plug and visually inspect the level (Figure 5-3). The fluid should be level with the bottom of the vent/fill hole. If more fluid is needed, use National Crane hydraulic oil.

A DANGER

Do not use EP type gear lubes in the brake section. This may prevent proper operation and cause the load to fall resulting in serious injury or death.

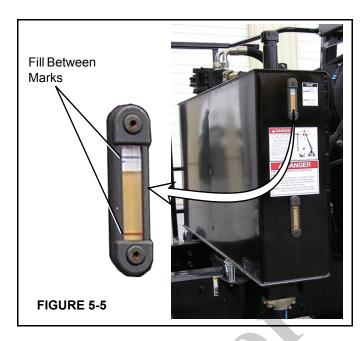


Hoist Gearbox Oil

To check the hoist gearbox oil level:

- Rotate the drum until the oil fill/drain plug is level with the oil level/fill inspection hole (Figure 5-4).
- Remove the oil fill/drain plug and visually inspect the level. The oil should be level with the bottom of the inspection hole. If more oil is needed, add SAE 90 EP gear lube.

NOTE: Hoist gear and brake lubricants are satisfactory for operation in temperatures from -10°F to +110°F (-23°C to 43°C). For operation outside this range, contact Manitowoc Crane Care for recommendations.



1400A Hydraulic Oil Reservoir Level

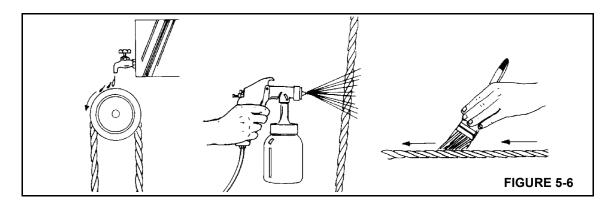
The hydraulic oil reservoir has a sight gauge located on the side of the reservoir (Figure 5-5). The oil in the hydraulic reservoir is sufficient when the level is between the upper and lower marks on the sight gauge with the crane parked on a level surface in the transport position and the oil cold.

If the oil level is to low, add the recommended hydraulic oil until the oil level is even with the upper mark. If the oil level is high, drain oil until the oil level is even with the upper mark.

WIRE ROPE LUBRICATION

Wire rope is lubricated during manufacture and the lubricant applied does not last the life of the rope. The wire rope must be lubricated as part of a regularly scheduled maintenance program. The lubricant applied must be compatible with the original lubricant and not hinder visual inspection of the rope. Consult the rope manufacturer for proper lubricant. The sections of rope which are located over sheaves or otherwise hidden during inspection and maintenance procedures require special attention.

The object of rope lubrication is to reduce internal friction and to prevent corrosion. The type and amount of lubrication applied during manufacture depends on the rope size, type, and anticipated use. This lubrication provides the finished rope with protection for a reasonable time if the rope is stored under proper conditions. When the rope is put into


service, periodic applications of a suitable rope lubricant are necessary. Characteristics of a good wire rope lubricant are that it should be:

- free from acids and alkalis.
- have sufficient adhesive strength to remain on the rope.
- of a viscosity capable of penetrating the interstices between wires and strands.
- not be soluble in the medium surrounding it under the actual operating conditions (i.e. Water).
- · have a high film strength.
- resistant to oxidation.

Before applying lubrication, accumulations of dirt or other abrasive material should be removed from the rope. Clean with a stiff wire brush and solvent, compressed air, or live steam. Lubricate the rope immediately after the rope is cleaned. Techniques that can be used include:

- bath
- dripping
- pouring
- swabbing
- painting
- pressure spray

Whenever possible, the lubricant should be applied at the top of a bend in the rope, because at that point the strands are spread by bending and are more easily penetrated. There should be no load on the rope while it is being lubricated. The service life of wire rope is directly proportional to the effectiveness of the method used and amount of lubricant that reaches the working parts of the rope.

SECTION 6 MAINTENANCE CHECKLIST

SECTION CONTENTS

Crane Inspection And Maintenance	
Special Boom Inspection	6-3
Stability	6-3
Hoist Cable Inspection and Maintenance	6-3
Keeping Records	6-3
Environmental Conditions	6-3
Dynamic Shock Loads	6-3
Precautions and Recommendations During	
Inspection	6-4
Inspection	6-4
Wire Rope Replacement	6-5
Care of Wire Rope	6-5
Replacement Cable	

CRANE INSPECTION AND MAINTENANCE

Regularly scheduled inspection and maintenance intervals are required to keep the crane in peak operating condition. The following pages outline the inspection and maintenance intervals.

Refer to the Service Manual for complete instructions on performing maintenance on this crane.

WARNING

Fall Hazard!

Do not, under any circumstances, work at an elevated height without using proper fall protection as required by local, state or federal regulations

Inspections

The inspection intervals listed below are to be conducted on the unit to ensure safe and proper operation. Refer to the Service Manual when installing missing or loose fasteners. Should a defect be found, a determination must be made as to whether the deficiency is a safety hazard or though not yet a safety hazard, needs to be monitored in the monthly inspections.

The inspections are separated into the following frequency classifications:

- Daily inspections performed by the operator at the start of the day.
- Weekly inspections performed by the operator.
- Monthly inspections performed by maintenance personnel.
- Periodic inspections performed by maintenance personnel at least every three months and includes all items listed under daily, weekly, and monthly inspections. Federal Laws through OSHA and ANSI B30.5 require that dated and signed records of these periodic inspections be kept. An inspection log book is available from your National Crane distributor or Manitowoc Crane Care.

WARNING

If any defect determined during the inspection is a safety hazard the machine must be removed from service and the defect corrected.

Daily Inspections/Pre-use

Check the following items:

- 1. Engine oil level.
- Hydraulic oil level.
- Radiator coolant level.

- Loose parts or damage to structures or welds.
- 5. Operation of lights, safety equipment and gauges.
- 6. Condition of tires and suspension.
- Condition of hoist cable and end attachment for corrosion, severe kinking, crushing, cutting, or slippage of cable clamps or wedge socket.
- 8. Loose parts or damage to cable centering hook blocks.
- **9.** Position of cable with guides and on sheaves.
- 10. Free turning of sheaves.
- 11. Lubrication as specified by the Lubrication, Section 5.
- 12. Evidence of oil leaks from hoses, gearboxes, or swivel.
- **13.** Hand and foot controls for malfunction or incorrect adjustment.
- **14.** Truck parking brake operation.
- 15. Boom proportioning to insure that all boom sections extend and retract equally.
- 16. All securing hardware such as cotter pins, snap rings, hairpins, pin keepers, and capscrews for proper installation.
- 17. Proper condition and operation of RCL and anti-two-block systems to include the anti-two-block switch weight and chain at the boom tip (and extension tip if equipped), power cords, audible alarms, and indicator lights on the console.
- 18. Proper operation of the load hook safety latch.
- Hooks and latches for excessive wear, cracks or damage from heat or chemicals.
- 20. Drain holes at rear of the first section of the boom are clear of all obstructions.
- **21.** All fasteners retaining the cable centering block are in place and tight.
- **22.** All safety covers for proper installation.
- **23.** Boom lift and outrigger holding valves for proper operation.
- 24. Hoist brake for proper operation at hoist capacity load.
- Control and drive mechanisms for excessive wear and/ or contamination from lubricants, water or other foreign matter.

Weekly Inspections

Check the following items:

- Battery water level.
- Tire pressure.
- **3.** Lubrication as specified by the *Lubrication*, Section 5.

- **4.** Torque the T-box mounting bolts during the first month of operation and periodic inspections thereafter.
- **5.** Torque the swing bearing mounting bolts during the first month of operation and periodic inspections thereafter.
- **6.** Torque the boom wear pad retaining bolts during first month of operation, and monthly thereafter.
- Check to see that this crane's Operator's Manual is with the crane. If the manual is missing, obtain the serial number of the crane and order an operator's manual immediately.

Monthly Inspections

Check the following items:

- All cylinders and valves for improper operation or signs of leaks.
- Lubrication as specified by the Lubrication, Section 5.
- 3. Load hook for cracks or having more than 15 percent normal throat opening or 10 degree twist.
- **4.** All structural members (boom, sub-base, frame, turret, and outriggers) for bends, cracks, or broken members.
- 5. All welds for breaks or cracks.
- **6.** All pins for proper installation.
- **7.** All control, safety, and capacity placards for readability and secure attachment.
- Cable clip bolts above wedge socket at end of loadline should be properly torqued, refer to the Service Manual.
- 9. All boom wear pad retaining bolts.
- Boom extension cables for proper tension or evidence of abnormal wear.
- Sheaves and cable drums for wear and cracks.
- **12.** Unwind the loadline and check according to cable maintenance procedure.

Periodic/Annual Inspection

Check the following items:

- **1.** All items listed under daily, weekly, and monthly inspections.
- Loose bolts and fasteners in all areas. Torque pin retainer bolts.
- **3.** All pins, bearings, shafts, and gears for wear cracks or distortion to include all pivot, outrigger and sheave pins, and bearings.
- **4.** Boom angle and boom length indicator for accuracy over full range.
- 5. Hydraulic systems for proper operating pressure.

- **6.** Outrigger pads for excessive wear or cracks.
- 7. Cylinders for:
 - a. Damaged rods
 - b. Dented barrels
 - c. Drift from oil leaking by piston
 - d. Leaks at rod seals, welds, or holding valves.
- **8.** PTO drive line system for proper alignment, lubrication and tightness.
- **9.** Hydraulic hose and tubing for evidence of damage such as blistering, crushing, or abrasion.
- **10.** Top and bottom boom wear pads for excessive wear.
- Inspect all electrical wires and connections for worn, cut or deteriorated insulation and bare wire. Replace or repair wires as required.
- **12.** Extend and retract cables, sheaves, pins, and bearings for wear or abrasion.
- **13.** Main frame and stabilizer mounting bolts for proper torque, refer to the *Service Manual*.
- **14.** Rotation bearing and gearbox mounting bolts for proper torque, refer to the *Service Manual*.
- 15. Missing or unreadable warning labels.
- **16.** Missing or unusable/unsafe condition of steps, ladders, handrails, guards or seat.

Special Boom Inspection

If the boom has not been disassembled and inspected in the last five years or 3,000 hours of use, the boom is to be completely torn down to allow a thorough inspection of the extend and retract cables, sheaves, and pins.

Stability

Stability of unit throughout working area. Check the stability procedure in Installation Section of the *Service Manual* annually or when any changes are made to crane or truck.

HOIST CABLE INSPECTION AND MAINTENANCE

WARNING

Worn or Damaged Equipment Hazard!

Never use a worn or damaged wire rope. Death or serious injury could result from using worn or damaged wire rope.

Wire rope should be inspected frequently/daily and periodically/yearly in accordance with the following information excerpted from a National Consensus Standard as referenced by Federal Government Agencies. Recommended inspection intervals may vary from machine to machine and may vary based on environmental conditions, frequency of lifts, and exposure to shock loads. The inspection time intervals may also be predetermined by state and local regulatory agencies.

NOTE: Wire rope may be purchased through Manitowoc Crane Care.

Any deterioration observed in the wire rope should be noted in the equipment inspection log and an assessment concerning wire rope replacement should be made by a qualified person.

Keeping Records

A signed and dated report of the wire rope's condition at each periodic inspection must be kept on file at all times. The report must cover all inspection points listed in this section. The information in the records can then be used to establish data which can be used to determine when a wire rope should be replaced.

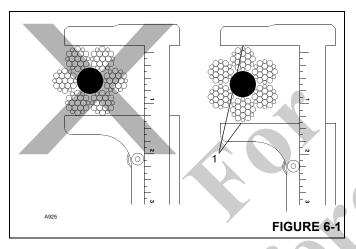
It is recommended that the wire rope inspection program include reports on the examination of wire rope removed from service. This information can be used to establish a relationship between visual inspection and the rope's actual internal condition at the time of removal from service.

Environmental Conditions

The life expectancy of wire rope may vary due to the degree of environmental hostility and other conditions to which these mechanical devices are subjected. Variation in temperature, continuous excessive moisture levels, exposure to corrosive chemicals or vapors or subjecting the wire rope to abrasive material may shorten normal wire rope life. Frequent/periodic inspections and maintenance of wire rope is recommended for preventing premature wear and to insure long-term satisfactory performance.

NOTE: Refer to *Wire Rope Lubrication*, page 5-7 for wire rope lubrication requirements.

Dynamic Shock Loads


Subjecting wire rope to abnormal loads beyond the endurance limit will shorten the wire rope life expectancy. Examples of this type of loading are listed below.

- High velocity movement, for example; hoisting or swinging of a load followed by abrupt stops.
- Suspending loads while traveling over irregular surfaces such as railroad tracks, potholes, and rough terrain.

 Lifting a load that is beyond the rated capacity of the lifting mechanism, such as overloading.

Precautions and Recommendations During Inspection

- Always use safety glasses for eye protection.
- Wear protective clothing, gloves, and safety shoes as appropriate.
- Measure the rope's diameter across crowns of the strands when determining if rope has become damaged, refer to Figure 6-1.

Inspection

All hoist cable in service needs to be inspected on a daily, monthly, and quarterly basis. Cable which has been idle for a period of a month or more must be given a thorough inspection before it is placed in service. These inspections should cover all types of deterioration including:

- Distortion such as kinking, crushing, un-stranding, bird caging, main strand displacement or core protrusion.
- Loss of cable diameter in a short cable length or unevenness of outer strands indicates the cable needs to be replaced.
- Significant corrosion.
- Broken or cut strands.
- Number, distribution and type of visible broken wires.
- Core failure in rotation resistant ropes.
- Prior electrical contact with a power line or other electric arc damage.
- Significantly corroded, cracked, bent, or worn end connections.

Only inspect the outer surface of a cable. Never attempt to open the cable.

Pay particular attention to areas of the rope where wear and other damage is likely to occur:

- Pick-up Points: Sections of wire rope that are repeatedly stressed during each lift, such as those sections in contact with sheaves.
- End Attachments: The point where a fitting is attached to the wire rope or the point where the wire rope is attached to the hoist drum.
- Abuse Points: The point where the wire rope is subjected to abnormal scuffing and scraping.

Daily Inspections

All cable in continuous service must be inspected at the beginning of each work day. Inspect the eye end and length of cable that is used in daily operation. The end should be inspected for abrasion, corrosion, broken wires, and loose or broken servings. Inspect the remainder of the cable length used for daily operations for points showing kinks, sharp bends, or any other evidences of damage or excessive wear.

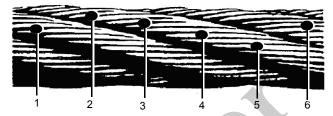
Monthly Inspections

Inspect the eye end and length of cable normally used in daily operations. Examine the rest of the cable for kinked, crushed or otherwise damaged points.

Periodic Inspections

Wire rope should be inspected periodically/annually, or at a shorter time interval, if necessitated by environmental or other adverse conditions, and shall cover the entire length of the wire rope. Periodic inspection should include all previous items listed under Inspection, plus the following:

- Inspect for severely corroded or broken wires at end connections.
- Inspect wire rope in areas subjected to rapid deterioration such as:
 - Sections in contact with saddles, equalizer sheaves, or other sheaves where wire rope travel is limited.
 - Sections of wire rope at or near terminal ends where corroded or broken wires may protrude.
- Inspect boom nose sheaves, hook block sheaves, boom extension/extension sheaves, auxiliary boom nose sheaves, and hoist drums for wear. Damaged sheaves or hoist drums can accelerate wear and cause rapid deterioration of the wire rope.


Inspect the eye end of the cable for greater wear than the rest of the cable. If the cable is in good condition, reverse the cable on the drum so that the wear is equalized along the total length of the cable.

Wire Rope Replacement

It is difficult to determine the exact time for replacement of wire rope (hoist cable) since many variable factors are involved. Proper determination of the condition of a rope depends upon the judgment of an experienced person. The following reasons are sufficient for consideration of rope replacement:

• Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one lay. The rope is unsafe for further use if there are either three broken wires in one strand (Breaks 2, 3, 4) or a total of six broken wires in all strands in any one lay.

- In rotation resistant ropes: two randomly distributed broken wires in six rope diameters or four randomly distributed broken wires in 30 rope diameters
- Wear of one-third the original diameter of outside individual wires. Worn rope, usually indicated by flat spots on the outer wires is unsafe for further use when less than two-thirds the thickness of the outer wire remains.
- Necking down of the rope indicates core failure.

- Kinking, crushing, bird caging, or any other damage resulting in distortion of the rope structure.
- Evidence of heat damage.
- Reductions from nominal diameter of more than:
 - 0.0156 in (.4 mm) for rope diameters to 0.313 in (8 mm)
 - 0.031 (.8 mm) for rope diameters 0.375 in (9.5 mm) to 0.50 in (12.7 mm)
 - 0.047 in (1.2 mm) for rope diameters 0.561 in (14.3 mm) to 0.75 in (19.1 mm)
 - 0.063 (1.6 mm) for rope diameters 0.875 in (22.2 mm) to 1.125 in (28.6 mm).

One outer wire broken at its point of contact with the core
of the rope which has worked its way out of, and
protrudes or loops out from the rope structure.

Care of Wire Rope

Handle wire rope with care to prevent damage to the individual wires which affect the overall strength and performance of the rope. Do not allow the formation of kinks, because this displaces the strands of wire from their original position and relation to each other causing severe bending and unequal tensions in the strands. This distortion and wire displacement cannot be corrected even under high tension and a permanent weak point remains in the rope. Displaced or raised wires indicate a previous kink, but does not show the damaged condition of the inner rope wires.

Never pull wire rope over a non-rotating support such as a spindle bar, a pin, or an inoperative sheave. This practice causes severe abrasion to the outer strand wires. A properly operating sheave or snatch block is essential to safety and long service life of the rope.

Do not use worn sheaves or sheaves with flat grooves because they do not provide sufficient support to prevent the distortion and flattening of the rope. Sheaves with nicked or broken flanges can cut or otherwise damage the rope.

An even distribution of rope coils over the hoist drum is essential to smooth operation. This prevents the rope from cutting down through or crushing other coils on the drum resulting in damage to and difficulty in unwinding the rope.

REPLACEMENT CABLE

If the hoist cable needs to be replaced, care should be taken in selecting a suitable replacement cable. The cable strength requirements are shown on the crane load chart. The types of cable are optional with 6 x 25 and Dyform being the most common. A high strength, rotation resistant cable is preferred and is furnished as standard by Grove Cranes. This cable eliminates single part line load spin and prolongs cable life. It also eliminates load block spin up when multipart reeving is used.

Standard

9/16 in. (14.3mm) Dia. Wire cable: Rotation Resistant

18X25 Nominal Breaking Strength: 19.25 Tons (17,463 kg)

Optional

9/16 in. (14.3mm) Dia. Wire cable: 6X25 General Purpose

6X25 Nominal Breaking Strength: 16.8 tons (15,241 kg)

CRANE ADJUSTMENTS AND REPAIRS

Before adjustments and repairs are started on a crane, read and be familiar with the safety information outlined under "Maintenance" on page 2-12.

Boom Extension Cable

If a cable replacement is required for the boom extension system, the replacement cable must be obtained through Manitowoc Crane Care. Extension cables are pre-stretched and have special connections for proper installation

Extension Jack Service and Maintenance

Important: Use only a good grade hydraulic jack oil, transmission oil, or turbine oil. Avoid mixing types of oil. Do not use brake fluid, alcohol, glycerin, detergent motor oil, or dirty oil. Improper fluid can cause serious internal damage to the jack rendering it inoperative.

Adding Oil to the Extension Jack

To add oil to the extension jack, do the following:

- 1. Set the jack in an upright level position.
- Lower the saddle and make sure the piston is fully depressed.
- 3. Remove the oil filler plug.
- 4. Fill until the oil is level with the filler plug hole.

Changing the Extension Jack Oil

For best performance and longest life, replace the oil at least once a year. To change oil, do the following:

- Remove the filler plug.
- Lay the jack on its side and drain the oil into a suitable drain pan. The oil will run slowly because air must enter as the oil drains out.
- Be careful to prevent dirt or foreign matter from entering the system.
- 4. Replace with proper oil as described above.

Lubrication

Add proper lubrication oil to all pivoting sections every three months.

Rust Prevention

Check the ram every three months for any sign of rust or corrosion. Clean as needed and wipe with an oil saturated cloth.

NOTE: When not in use, always leave the saddle and ram all the way down.

HYDRAULIC SYSTEM

Oil Cooler

The heat exchanger must be kept clean for efficient operation of the hydraulic cooler system. Wash the heat exchanger core frequently to eliminate oil film, road dirt, and other foreign object buildup on the heat exchanger fins.

Frequent inspection and tightening of hose clamps eliminates the possibility of end connection failure due to back pressure from a cold startup.

If the cooler system fails to provide adequate performance, reduced air or oil flow through the heat exchanger is the probable cause. Inspect the cooling fan for proper operation. Any obstructions to air flow should be corrected (cooler too close to other truck components, foreign matter in heat exchanger fins, etc.) All hydraulic lines should be periodically checked for obstructions, hose kinks or other flow restrictions.

Hydraulic System Trouble Diagnosis

The following chart lists malfunctions which may occur during equipment operation, followed immediately by possible cause and possible solution. These are not all inclusive but are designed to help isolate the problem and should be checked before calling the factory Service Department.

7	7
	\mathbf{a}
۱	•

Condition	Possible Cause	Possible Solution
	RCL system inoperative.	Insure the RCL system is working properly and the anti-two-block solenoid is powered.
	Load too heavy.	Check load chart.
	PTO not engaged.	Engage PTO.
	Low hydraulic fluid supply.	Check and fill as required.
No response to control	Suction line blocked.	Drain tank and hose and remove blockage.
	Broken hydraulic pressure line.	Replace as required.
	Defective hydraulic pump.	See Pump Service Manual.
	Incorrect relief valve setting.	Adjust relief (See "Specifications 1400A" on page 2-13).
	Relief valve sticking.	Clean relief.
	Pump not operating at proper speed.	Check PTO ratio, pump size and engine speed for proper oil flow.
	Low hydraulic fluid supply.	Check and fill as required.
	Relief valve sticking.	Remove and clean.
	Relief setting too low.	Readjust to proper setting.
	Worn pump, motor or cylinder.	Replace bad part.
Poor hydraulic system	Plugged filter.	Change filter.
performance	Boom holding valves out of adjustment.	Adjust or clean as required.
	Oil temperature too high.	Run engine at idle with controls in the neutral position until hydraulic oil light goes out.
	Hydraulic oil too cold or dirty.	Warm oil or use less viscous oil.
	Line restricted.	Check lines; clean and repair as required.
	Internal control valve crack.	Replace valve.
	Load too heavy.	Check load chart and reduce load.
	Loose turntable bearing.	Torque bearing mounting bolts.
	Loose swing gearbox mounting bolts.	Tighten bolts.
	Worn gears or bearing.	Replace worn parts or adjust gearbox spacing.
	Operator control of lever too erratic.	Operate controls smoothly.
Swing moves erratic or sloppily (Standard system).	Motor counterbalance valves dirty or not set properly.	Clean or replace counterbalance valves not set at 600 psi.
	Brake not holding properly.	Replace worn brake parts or shim brake to proper torque.
	Brake releasing at wrong time or erratically.	Bleed air from brake with bleed screw on side of brake.
	Cuting an and adjustment and a day	Adjust or clean brake for proper release.
	Swing speed adjustment set too low.	Adjust valve on turn motor.

Condition	Possible Cause	Possible Solution
	Turn circuit relief valves sticking.	Clean and check circuit pressure.
Swing will not turn (Standard System)	Turntable bearing drag.	Lubricate thoroughly as rotating boom.
	Brake not releasing properly.	Check for 200 + PSI brake pilot pressure. Clean pilot line or adjust motor counterbalance valves.
	Swing anod adjustment set too low	Adjust or clean brake for proper release.
	Swing speed adjustment set too low.	Adjust valve on turn motor.
	Excessive pump speed.	Adjust foot throttle or check for too high PTO ratio.
	Low oil temperature.	Allow unit to warm up.
	Low hydraulic oil supply.	Check and fill.
Excessive pump noise	Suction line kinked, collapsed or blocked.	Clear blockage.
during operation.	Hydraulic oil too thick.	Warm oil or use oil more applicable to environment.
	Relief valve chattering.	Dirt in relief valve or damaged relief.
	Hydraulic tubing vibration.	Check for loose tubing.
	Tank breather plugged.	Clean breather.
	Not getting oil to cylinders.	Clean and replace as required.
	Worn or damaged piston seals.	Replace as required.
Cylinders drift	Air in hydraulic oil.	Cycle crane cylinder to remove air.
	Loose holding valve.	Tighten valve.
	Dirt in holding or check valve.	Clean valve.
	Load too heavy.	Check load and change to applicable multipart reeving.
	Relief valve setting too low.	Check and adjust if required.
Hoist will not lift or hold	Motor worn excessively.	Replace motor.
load.	Counterbalance valve defective or leaking.	Clean and replace as necessary.
	Anti-two-block system defective.	Repair anti-two-block system.
	Brake worn out.	Repair or replace brake.
Hoist goarboy hoats	Gearbox grease low.	Check and fill as required.
Hoist gearbox heats.	Duty cycle too high.	Reduce cycle time or speed of hoist.
	Boom sections need lubrication.	Grease boom.
Boom chatters during extension/retraction or doesn't proportion properly.	Wear pads not shimmed correctly.	Re-shim as described in boom assembly section.
	Worn wear pads.	Replace pads.
	Extension cables out of adjustment.	Readjust cables and tension properly.
	Extend or retract cables broken.	Disassemble, inspect, and replace cables.
	Proportioning cables not attached.	Reconnect, replace and/or adjust cables.
Boom will not extend.	Anti-two-block system shut down.	Lower hook, and extend load.
	Defective anti-two-block system	Repair ATB if defective.

oil	

Condition	Possible Cause	Possible Solution
System is in a state of constant cut-out	Blown fuse.	Check fuse at crane cab console. Replace if necessary.
constant cut-out.	ATB switch open.	Ensure that ATB switch is closed.
System cuts out too early or too late.	RCL programmed wrong.	Reprogram RCL with correct lift values.
	Jib Jack Troubleshootir	ng
Will not lift load.	No oil in system.	Add oil to reservoir.
will flot lift load.	Release valve not closed.	Turn handle clockwise tightly.
Will lift load only part way.	Oil level low.	Add oil to reservoir tank.
	The following valve or valves leaking.	
	a. Suction valve	Replace jack
Will lift load but will not hold.	b. Delivery valve	Replace Jack
noid.	c. Release valve	
	Packings worn or damaged.	Replace jack
Jack will not lower.	Release valve stuck, probably dirt or foreign matter.	Transfer load then replace dirty oil, flush oil reservoir with non-flammable solvent.
Poor lifting.	Dirty oil.	Change oil.
	Air in hydraulic system.	Purge air from system.
Poor pumping action.	Oil seal for pump unit worn in out or damaged.	Replace jack.

TIRE LOAD AND INFLATION TABLE

Definite tire inflation pressures are established for each tire size depending upon the load imposed on the tires. For greater stability, riding comfort and prolonged tire life, tires should be inflated for the loads carried. The "Load and inflation Table" shown below indicates the proper inflation pressure.

NOTE: The values in the tables below are as published by the Tire and Rim Association 2005. Your vehicle may be equipped with other tire sized or the same size tires rated differently. Always check the tire sidewalls to verify the maximum capacity and inflation. Inflation pressure and loading must not exceed the values shown on the wheel or rim.

Tire and Load Inflation Tables

Letters in parenthesis denote the load range for which the bold face loads are a maximum. International load index numbers are shown after the load range. The load range letters and corresponding ply rating are shown below.

Radial Ply Metric Tires for Trucks, Busses, and Trailers Used in Normal Highway Service

Radial Ply Tires Mounted on 15° Drop Center Rims Tire and Rim Association Standard

TABLE TBM-2	R	TIRE LOAD LIMITS (kg/lbs.) AT VARIOUS COLD INFLATION PRESSURES (kPa/psi)											
TIRE SIZE DESIGNATION	USAGE	450 65	480 70	520 75	550 80	590 85	620 90	660 95	690 100	720 105	760 110	790 <i>115</i>	830 120
	DUAL	1750 3860	1830 <i>4040</i>	1930 <i>4245</i>	2000 4410	2030 4480	2120 4665	2240 4940	2280 5025	2360 <i>5195</i>	2430 5355	5535	2575(H) 5675(H)
295/60R22.5	SINGLE	1850 <i>4080</i>	1950 <i>4300</i>	2050 4515	2120 4675	2230 4925	2330 5125	2430 5355	2500 5520	2590 <i>5710</i>	2650 5840	6085	2800(H) 6175(H)
225/70040 5		1180(D) 2600(D)	2720	1300 2860	1360(E) 3000(E)	3115	1470 3245	1550(F) 3415(F)	3490	1640 3615	1700(G) 3750(G)		
225/70R19.5	SINGLE	1250(D) 2755(D)	1310 2895	1380 <i>3040</i>	1450(E) 3195(E)	1500 3315	3450	1650(F) 3640(F)	3715	1740 3845	1800(G) 3970(G)		
245/70R19.5	DUAL				1550 <i>3415</i>	1590 <i>3515</i>	3655	1750(F) 3860(F)	3940	1850 <i>4075</i>	1950(G) 4300(G)	4345	2060(H) 4540(H)
243/10/(19.5	SINGLE				1650 <i>3640</i>	1700 <i>3740</i>	1770 3890	1850(F) 4080(F)	4190	1970 <i>4335</i>	2060(G) 4540(G)	4620	2180(H) 4805(H)
265/70R19.5	DUAL				1700 <i>3750</i>	1780 3930	1860 <i>4095</i>	1950 <i>4300</i>	2000 4405	2000 <i>4415</i>	2120(G) 4675(G)		
200/10/110.0	SINGLE				1800 <i>3970</i>	1900 <i>4180</i>	1970 <i>4355</i>	2060 <i>4540</i>	2130 <i>4685</i>	2200 4850	2300(G) 5070(G)		
305/70R19.5	DUAL				2060 <i>4540</i>	2120 4670	2200 4860	2300 5070	2370 5230	2450 5410	2575(H) 5675(H)	5//0	2725(J) 6005(J) 143
000/10/110.0	SINGLE				2240 4940	2330 5130	2420 5340	2500 5510	2610 <i>5745</i>	2700 5945	2800(H) 6175(H)	2870 6340	3000(J) 6610(J)

Radial Ply Metric Tires for Trucks, Busses, and Trailers Used in Normal Highway Service

Radial Ply Tires Mounted on 15° Drop Center Rims Tire and Rim Association Standard

TABLE TBM- Continued	TIRE LOAD LIMITS (kg/lbs.) AT VARIOUS COLD INFLATION PRESSURES (kPa/psi)												
TIRE SIZE DESIGNATION	USAGE	450	480	520	550	590	620	660	690	720	760	790	830
2201011111111		65	70	75	80	85	90	95	100	105	110	115	120
	DUAL				1800	1860	1940	2000	2020	2090	2120(G)	2230	2300(H) 137
055/70000	DUAL				3970	4110	4275	4410	4455	4610	4675(G)	4915	5070(H)
255/70R22.5	OINOLE				1900	1980	2060	2120	2220	2300	2360(G) ₁₃₈	2450	2500(H) ₁₄₀
	SINGLE				4190	4370	4550	4675	4895	50 65	5205(G)	5400	<i>5510</i> (H)
	DUAL				2360	2440	2540	2560	2730	2830	3000(H) 146	3010	3150(J) 148
					5205	5 375	5 595	5840	6025	62 35	6610(H) 148	6640	6940(J)
305/75R22.5	SINGLE				2575	2680	2790	2900	3000	3110	3250(H)	3310	3450(J) 151
					5675	59 05	6150	6395	6620	6850	7160(H)	7300	7610(J)
					2575	2650	2750	2900(G)	2970	3070	3150(H)	3270	3450(J)
	DUAL			4	5675	5840	6070	6395(G)	6545	6770	6940(H)	7210	7610(J)
315/80R22.5					2800	2910	3030	3150(G)	3260	3370	3450(H) ₁₅₁	3590	3750(J) 154
	SINGLE				6175	6415	6670	6940(G) 148	7190	7440	7610(H)	7920	8270(J)
					2430	2520	2620	2725	2820	2920	3075(H) ₁₄₇	3110	3250(J) 149
	DUAL				5355	55 50	5780	6005	6215	6 435	6780(H)	6860	7160(J)
305/85R22.5					2650	2770	2880	3000	3100	3210	3350(H) ₁₅₀	3420	3550(J) 152
	SINGLE				5840	6100	6350	6610	6830	7070	7390(H) 150	7540	7830(J) 152

Radial Ply Metric Tires for Trucks, Busses, and Trailers Used in Normal Highway Service

Radial Ply Tires Mounted on 15° Drop Center Rims Tire and Rim Association Standard

TABLE TBM-1	R	TIRE LOAD LIMIT AT VARIOUS COLD INFLATION PRESSURES											
TIRE SIZE DESIGNATION	USAGE	kPa	480	520	550	590	620	660	690	720	760	790	830
		psi	70	75	80	85	90	95	100	105	110	115	120
	DUAL	kg	1430	1500	1600	1640	1710	1800	1840	1900	1950(G) ₁₃₁		
245/75R22.5	DOAL	lbs.	3160	3315	3525	3615	3765	3970	4055	4195	4300(G) ¹³¹		
235/80R22.5	CINICIE	kg	1570	1650	1750	1800	1880	1950	2020	2090	2120(G) ₁₃₄		
	SINGLE	lbs.	3470	3645	3860	3975	4140	4300	4455	4610	4675(G)		
	DUAL	kg	1600	1680	1750	1830	1910	2000	2050	2130	2180(G)		
265/75R22.5		lbs.	3525	3705	3860	4040	4205	4410	4525	4685	4805(G)	l	
255/80R22.5	SINGLE	kg	1760	1850	1950	2010	2100	2180	2260	2340	2360(G)		
		lbs.	3875	4070	4300	4440	4620	4805	4975	5750	5205(G)	l	
	61141	kg	1860	1950	2060	2130	2220	2300(F)	2390	2470	2575(G)	2630	2725(H) 143
295/75R22.5	DUAL	lbs.	4095	4300	4540	4690	4885	5070(F) 137	5260	5440	5675(G)	5795	6005(H)
275/80R22.5	CINICIE	kg	2040	2140	2240	2340	2440	2500(F)	2620	2710	2800(G)	2890	3000(H)
	SINGLE	lbs.	4500	4725	4940	5155	5370	5510(F) 140	5780	5980	6175(G)	6370	667 <i>0(H)</i>
	DUAL	kg	1870	1970	2060	2150	2240	2360(F)	2410	2490	2575(G)	2660	2800(H)
285/75R24.5	DUAL	lbs.	4135	4340	4540	4740	4930	5205(F) 138	5310	0490	30/3(G)	1 5860	6775(H)
275/80R24.5	CINICIE	kg	2060	2160	2240	2360	2460	2575(F)	2650	2740	2800(G)	2920	3075(H)
	SINGLE	lbs.	4545	4770	4940	5210	5420	5675(F) 141	5835	6040	6175(G)	6440	6780(H) 147

Metric Wide Base Tires for Trucks, Busses, and Trailers Used in Normal Highway Service

Tires Used as Singles Mounted on 15° Drop Center Rims Tire and Rim Association Standard

TABLE MWB-1		Tire Load Limits at Various Cold Inflation Pressures											
TIRE SIZE	kPa	480	520	550	590	620	660	690	720	760	П	790	830
DESIGNATION	psi	70	75	80	85	90	95	100	105	110		115	120
445/05D40 5	kg	3410	3610	3750	3960	4100	4250	4410	4540	4750(J) ₄	62		
445/65R19.5	lbs.	7540	7930	8270	8680	9040	9370	9730	10100	10500(J) '	02		
205/05/200	kg	2880	3060	3150	3350	3470	3650	3740	3850	4000	- 4	4100	4250(J) ₁₅₈
385/65R22.5	lbs.	6380	6720	6940	7350	7650	8050	8230	8510	8820	_ :	9050	9370(J) 156
405/05D00 5	kg	3430	3640	3750	3980	4130	4250	4440	4580	4750(J) ₄	62 4	4880	5000(L) ₁₆₄
425/65R22.5	lbs.	7590	7990	8270	8740	9100	9370	9790	10100	10500(J) '	1	10700	11000(L)
445/05D00.5	kg	3720	3950	4125	4320	4470	4625(H) ₁₆₁	4820	4960	5150	;	5290	5600(L) 168
445/65R22.5	lbs.	8230	8660	9090	9480	9870	10200(H) 101	10600	11000	11400		11700	12300(L) 168

Radial Ply Tires for Trucks, Busses, and Frailers Weed in Normal Highway Service Radial Ply Tires Mounted on 15° Drop Center Rims

Tire and Rim Association Standard

TABLE TTB-	3R	TIRE LOAD LIMITS (kg/lbs.) AT VARIOUS COLD INFLATION PRESSURES (kPa/psi)										
TIRE SIZE	USAGE	480	520	550	590	620	660	690	720	760	790	830
DESIGNATION		70	75	80	85	90	95	100	105	110	115	120
	DUAL	1120	1170	1215(D) 115	1260	1310	1360(E) 119	1410	1460	1500(F) 122		l
8R19.5	DUAL	2460	2570	2680(D) =	2785	2890	3000(E)	3700	3200	3305(F)		
01(13.5	SINGLE	1150	1220	1285(D) 117	1340	1400	1450(E) 121	1500	1550	1600(F) 124		i l
		2540	2680	2835(D)	2955	1 3075 -	3795(E)	3305	3415	3525(F)		
	DUAL	1250	1300	1360(D) 119	1410	1460	1500(E) 122	1570	1640	1700(F) 126		i l
8R22.5	00/12	2750	2870	3000(D)	3100	1 3200	3305(E)	J 3455	3605	3750(F)		
01122.0	SINGLE	1290	1360	1450(D) 121	1500	1550	1600(E) 124	1670	1740	1800(F) 128		i l
	0000	2840	2990	3195(D)	3305	1 3475	3525(E)	36/5	3825	39/U(F)		
	DUAL	1480	1550	1610	1670	1750(E) 127	1820	1890	1950(F) 131	2010	2070	2120(G) 134
9R22.5	DOAL	3270	3410	3550	3690	1 3860(E)	4005	4150	4300(F)	4425	I 4550	146/5(G) I
31122.3	SINGLE	1530	1610	1690	1760	1850(E) 129	1920	1990	2060(F) 133	2120	2180	2240(G) 136
		3370	3560	3730	3890	1 4000CE	4235	4390	454U(F)	46/5	I 4870	1 <i>4940</i> (G)
	DUAL	1750	1830	1910	2000(E) 132	2080	2160	2240(F) 136	2300	2360	2430(G) 139	i l
10R22.5		3860	4045	4230	1 44 70(E)	I 4585	4/00	1494U(F)	30/3	5210	5355(G)	
	SINGLE	1850	1940	2030	2120(E) 134	2200	2280 5025	2360(F) 5205(F) 138	2430 5360	2500 5515	2575(G) 5675(G) 141	l
		4080	4280	4480	40/J(E)	I 465U	2460		335U	2680	2710	2725(U)
	DUAL	1990	2080	2160	2250	2360(F) 138	5415	2560 5625	2650(G) 5840(G) 142	5895	5950	2725(H) 6005(H) 143
11R22.5		4380	4580	4760	4950 2370	5205(F)	2600	2700	3040(G)	2870	2940	3000(H)
	SINGLE	2050	2160	2260		2500(F) 140	5730	5950	2800(G) 6175(G) 144	6320	6465	3000(H) 6610(H)
		4530	4770	4990 2300	5220 2390	5510(F)	2580	2660	2725(C)	2820	2910	3000(H) 146
	DUAL	2110 4660	2210 4870	5070	5260	2500(F) 5510(F)	5675	5840	2725(G) 143 6005(G)	6205	6405	6610(H) 146
11R24.5		2190	2300	2410	2520	3570(F)	2770	2890	3000(G) 146	3080	3160	3250(H) 149
	SINGLE	4820	5070	5310	5550	2650(F) 5840(F)	6095	6350	6610(G) 146	6790	6970	7160(H) 149
		2170	2260	2350	2440	2575(F)	2630	2680	2725(G) 143	2840	2960	3075(H) 147
	DUAL	4780	4990	5190	5390	5675(F) 141	5785	5895	6005(G) 143	6265	6525	10/80(H) 1
12R22.5		2240	2360	2470	2580	2725(F) 143	2820	2910	3000(G) 146	3120	3240	3350(H) ₁₅₀
	SINGLE	4940	5200	5450	5690	6005(F) 143	6205	6405	0070(G)	08/0	7130	1/390(11)
		2300	2400	2500	2600	2650(F)	2770	2890	3000(G) 146	3080	3160	3250(H) 149
	DUAL	5080	5300	5520	5730	384 <i>U</i> (F)	1 0093	6350	007 <i>U</i> (G)	0/90	6970	1 <i>/100</i> (H) 1
12R24.5		2380	2500	2630	2740	2900(F) 145	3020	3140	3250(G) 149	3350	3450	3550(H) 152
	SINGLE	5240	5520	5790	6040	6395(F) 145	6650	6910	7160(G) 149	7380	7600	7830(H) 152
		0270	0020	5.00	5570	(- /						

SPECIFICATIONS 1400A

Hydraulic System

Requirements:

Boom Up	. 35 GPM (132 LPM), 3600 psi ±50 (24.8 MPa ±344.7 kPa)
Boom Down	. 17 GPM (64 LPM), 3650 psi ±100 (25 MPa ±689 kPa)
Boom Telescope Out	. 35 GPM (132 LPM), 2700 psi ±100 (18.6 MPa ±689 kPa)
Boom Telescope In	. 17 GPM (64 LPM), 2250 psi ±100 (15.5 MPa ±689 kPa)
Hoist System	. 35 GPM (132 LPM), 3800 psi +100/-0 (26 MPa +689/-0 kPa)
Outrigger	. 16 GPM (60.5 LPM), 3000 psi +100/-0 (20.6) MPa +689/-0 kPa)
Swing	. 16 GPM (60.5 LPM), 3100 psi +200/-0 (21.3 MPa +1379/-0 kPa)
Reservoir Capacity	. 99 gal. (287.6 L) at full mark
System Capacity	. 155 Gallons (586.7 L)
Filtration	. 10 Micron (Return Filter)
Flow rates listed are at free flow condition (approx.	100 psi / 698 kPa)

Hoist System

Hoist Performance (with 1 part of line)

Layer	Hois	t Pull	Normal Ho	oist Speed	High Spe	ed Hoist	BOS Hoist Pull		
	lbs	(kg)	fpm	(mpm)	fpm	(mpm)	lbs	(kg)	
1	12,100	(5488)	138	(39)	263	(62.7)	5,800	2,630	
2	10,800	(4898)	163	(42.9)	313	(69.4)	5,200	2,358	
3	9,900	(4490)	188	(47.5)	338	(76.5)	4,800	2,177	
4	9,000	(4082)	200	(51.8)	363	(83.2)	4,400	1,995	

All ratings based on 35 GPM at 3800 psi. (132.5 LPM at 26.2 MPa)

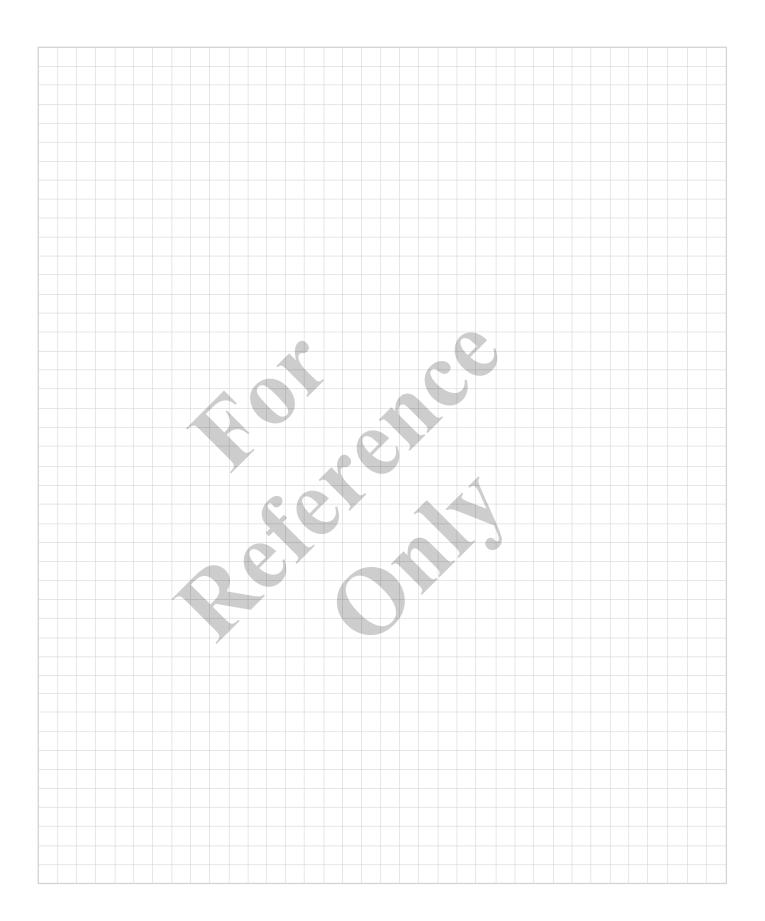
Crane Operating Speeds

Rotation, 360°	
Boom Up, (-10° to 80°)	30 sec. ±5 sec.
Boom Down, (80° to -10°)	32 sec. ±5 sec.
Boom Extend *	
Boom Retract *	
Boom Extend **	44 fpm ±5 fpm (13.4 mpm ±1.5 mpm)
Boom Retract **	44 fpm ±5 fpm (13.4 mpm ±1.5 mpm)
Outrigger Beam Extend	16 sec ±3 sec.
Outrigger Beam Retract	18 sec ±3 sec.

^{*} Boom Length of 31 ft - 100 ft and 33 ft - 110 ft (9.4 m - 30.4 m and 10 m - 33.5 m)

NOTE: Crane operating speeds based on engine speed at governed RPM and hydraulic reservoir temperature at 100°F (37.7°C).

^{**} Boom Length of 32 ft - 127 ft (9.7 m - 38.7 m)


Alphabetical Index

Accidents	
Anti-two-block Weight Installation	4-7
Boom Extension	
Cold Weather Operation	. 2-22
Crane Adjustments and Repairs	6-6
Crane Cab Climate Controls	3-7
Crane Controls	3-4
Crane Inspection And Maintenance	6-1
Crane Stability/Structural Strength	2-5
Electrocution Hazard	
Environmental Protection	. 2-12
Hoist Cable Inspection and Maintenance	
hoist System Operation	
Hydraulic System	6-6
Install the remainder of the cable, as applicable	4-9
Installing Cable On The Hoist	
Jib Removal	
Jib Safety Information	4-3
Lifting the Load	. 3-11
Load Chart	. 3-10
Lubrication Points	
Maintenance	. 2-12
Multipart Line Reeving	4-8
Operating Procedures	3-8
Multipart Line Reeving	2-4
Operator's Information	2-2
Operator's Qualifications	2-3
Outrigger Setup	4-1
Outrigger Setup	3-2
Overload Inspection	. 2-24
Parking and Securing	. 2-22
Personnel Handling	. 2-11
Replacement Cable	6-5
Safety Messages	2-1
Shut Down and preparation For Road Travel	. 3-11
Shut-Down	. 2-22
Shut-Down	4-4
Specifications 1400A	. 6-13
Stow Pegs for hoist Cable	
Temperature Effects on Hook Blocks	
Temperature Effects on Hydraulic Cylinders	
Tire Load And Inflation Table	
Transporting the Crane	
Travel Operation	
Truck Cab Controls	
Wire Rope Lubrication	
Work Practices.	
Work Site Location	3_10

National Crane APL-1

